
Sugar Developer Guide 6.3
• Sugar Developer Guide 6.3

◦ Preface

◦ Introduction

◦ Application Framework

◦ Module Framework

◦ Customizing Sugar

◦ Sugar Logic

◦ OAuth

Powered by

1

Sugar Developer Guide 6.3
This page was not added to the PDF due to the following tag(s): article:topic-guide

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3
Updated: Thu, 21 Nov 2013 00:53:21 GMT

Powered by

2

Preface
1. Overview

2. The Sugar Application

3. The Sugar Community

4. Audience

5. Application Overview

5.1. Core Features

5.1.1. Sales Force Automation

5.1.2. Marketing Automation

5.1.3. Customer Support

5.1.4. Collaboration

5.1.5. Reporting

5.1.6. Administration

6. Related Documentation

Overview
Welcome to Sugar, an open source Customer Relationship Management (CRM) application. Sugar
enables organizations to efficiently organize, populate, and maintain information on all aspects of their
customer relationships.

The Sugar Application
It provides integrated management of corporate information on customer accounts and contacts, sales
leads and opportunities, plus activities such as calls, meetings, and assigned tasks. The system
seamlessly blends all of the functionality required to manage information on many aspects of your
business into an intuitive and user-friendly graphical interface.

Sugar also provides a graphical dashboard to track the sales pipeline, the most successful lead sources,
and the month-by-month outcomes for opportunities in the pipeline.

The Sugar Community
Sugar is based on an open source project and therefore advances quickly through the development and
contribution of new features by its supporting community.

Welcome to the community!

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3
Updated: Thu, 21 Nov 2013 00:53:21 GMT

Powered by

3

Audience
The Sugar Developer Guide provides information for developers who want to extend and customize
SugarCRM functionality using the customization tools and API’s provided in the Sugar Ultimate,
Enterprise, Corporate, Professional and Community Editions.

Application Overview
Sugar consists of modules which represent a specific functional aspect of CRM such as Accounts,
Activities, Leads, and Opportunities. For example, the Accounts module enables you to create and
manage customer accounts, the Activities module enables you to create and manage activities related to
accounts, opportunities, etc. Sugar modules are designed to help you manage your customer
relationships through each step of their life cycle, starting with generating and qualifying leads, through
the selling process, and on to customer support and resolving reported product or service issues. Since
many of these steps are interrelated, each module displays related information. For example, when you
view the details of a particular account, the system also displays the related contacts, activities,
opportunities, and bugs. You can view and edit this information and also create new information.
As a developer, Sugar gives you the ability to customize and extend functionality within the base CRM
modules. You can customize the look and feel of Sugar across your organization. Or you can create
altogether new modules and build entirely new application functionality to extend these new modules.

Core Features

Sales Force Automation

• Lead, Contact, and Opportunity Management to pursue new business, share sales information,
track deal progress, and record deal-related interactions

• Account management capabilities to provide a single view of customers across products,
geographies, and status

• Automated Quote and Contract management functionality to generate accurate quotes with
support for multiple line items, currencies, and tax codes

• Sales forecasting and pipeline analysis to give sales representatives and managers the ability
to generate accurate forecasts based on sales data in Sugar.

• Sugar Dashboards to provide real-time information about leads, opportunities, and accounts

• Sugar Plug-ins for Microsoft Office to integrate your CRM data with Microsoft’s leading
productivity tools

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3
Updated: Thu, 21 Nov 2013 00:53:21 GMT

Powered by

4

•
Sugar Mobile for iPhone, a native Sugar application for iPhone, to access contacts,
opportunities, accounts, and appointments in Sugar Enterprise and Sugar Professional while
logging calls and updating customer accounts

• Sugar Mobile to access mobile functionality through any standards-based web browser

Marketing Automation

• Lead management for tracking and cultivating new leads

• Email marketing for touching prospects and customers with relevant offers

• Campaign management for tracking campaigns across multiple channels

• Campaign Wizard to walk users through the process of gathering information such as the
marketing channel, targets, and budget needed to execute a campaign effectively

• Campaign reporting to analyze the effectiveness of marketing activities

• Web-to-Lead forms to directly import campaign responses into Sugar to capture leads

Customer Support

• Case management to centralize the service history of your customers, and monitor how cases
are handled

• Bug tracking to identify, prioritize, and resolve customer issues

• Customer self-service portal to enable organizations to provide self-service capabilities to
customers and prospects for key marketing, sales, and support activities

• Knowledge Base to help organizations manage and share structured and unstructured
information

Collaboration

• Shared Email and calendar with integration to Microsoft Outlook

• Activity management for emails, tasks, calls, and meetings

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3
Updated: Thu, 21 Nov 2013 00:53:21 GMT

Powered by

5

• Content syndication to consolidate third-party information sources

• Sugar mobile functionality for wireless and PDA access for employees to work when they are
away from the office

• Sugar Offline Client to enable employees who work offline to update Sugar automatically when
they return to the network

Reporting

• Reporting across all Sugar modules

• Real-time updates based on existing reports

• Customizable dashboards to show only the most important information

Administration

• Edit user settings, views, and layouts quickly in a single location

• Define how information flows through Sugar (workflow management) and the actions users can
take with information (access control)

• Customize the application in Studio to meets the exact needs of your organization

• Create custom modules in Module Builder

Related Documentation
Sugar Ultimate Application Guide, Sugar Enterprise Application Guide, Sugar Corporate Application
Guide, Sugar Professional Application Guide, and Sugar Community Edition Application Guide: Describe
how to install, upgrade, set up, configure, manage, and use Sugar Ultimate, Sugar Enterprise, Sugar
Corporate, Sugar Professional, and Sugar Community Edition.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
00_Preface

Updated: Thu, 21 Nov 2013 00:53:21 GMT
Powered by 6

Introduction
1. Overview

2. Background

3. Application Framework

3.1. Directory Structure

3.2. Key Concepts

3.2.1. Application Concepts

3.2.2. Files

3.2.3. Variables

3.2.4. Entry Points

4. Module Framework

5. User Interface Framework

6. Extension Framework

7. Sugar Dashlets

8. Web Services

9. Connectors

Overview
SugarCRM was originally written on the LAMP stack (Linux, Apache, MySQL and PHP). Since version 1.0,
the SugarCRM development team has added support for every operating system (including Windows,
Unix and Mac OSX) on which the PHP programming language runs for the Microsoft IIS Web server, the
Microsoft SQL Server, and Oracle databases. Designed as the most modern web-based CRM platform
available today, SugarCRM has quickly become the business application standard for companies around
the world. See the Supported Platforms page for detailed information on supported software versions
and recommended stacks.

Background
Sugar is available in five editions: the Community Edition, which is freely available for download under
the GPLv3 public license, and the Professional, Corporate, Enterprise, and Ultimate editions, which are
sold under a commercial subscription agreement. All five editions are developed by the same
development team using the same source tree with extra modules available in the Professional,
Corporate, Enterprise, and Ultimate editions. Sugar customers using the Professional, Corporate,
Enterprise, and Ultimate editions also have access to Sugar Support, Training, and Professional Services

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
00_Preface

Updated: Thu, 21 Nov 2013 00:53:21 GMT
Powered by 7

http://support.sugarcrm.com/04_Resources/Supported_Platforms

offerings. Contributions are accepted from the Sugar Community, but not all contributions are included
because SugarCRM maintains high standards for code quality.

From the very beginning of the SugarCRM Open Source project in 2004, the SugarCRM development
team designed the application source code to be examined and modified by developers. The Sugar
application framework has a very sophisticated extension model built into it allowing developers to make
significant customizations to the application in an upgrade-safe and modular manner. It is easy to modify
one of the core files in the distribution; you should always check for an upgrade-safe way to make your
changes. Educating developers on how to make upgrade-safe customizations is one of the key goals of
this Developer Guide.

Application Framework
The Sugar application code is based on a modular framework with secure entry points into the
application (e.g. index.php or soap.php). All modules, core or custom, must exist in the <sugar root>/
modules/ folder. Modules represent business entities or objects in Sugar such as Contacts, and the
object has fields or attributes that are stored in the database, as well as a user interface (UI) for the
user to create and modify records. A module encompasses definitions for the data schema, user
interface, and application functionality.

The structure of Sugar’s root directory is shown below.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
00_Preface

Updated: Thu, 21 Nov 2013 00:53:21 GMT
Powered by 8

Directory Structure

SugarCRM code resides in various directories within the Sugar installation. The structure of the
directories within the Sugar application consists of the following root level directories:

•

cache: Various cache files written to the file system to minimize database accesses and store
user interface templates created from metadata. Files uploaded into the application such as Note
Attachments or Documents reside in this directory (refer to upload_dir parameter in the
config.php file). This is an active cache directory and not all files can be deleted.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
00_Preface

Updated: Thu, 21 Nov 2013 00:53:21 GMT
Powered by 9

•
custom: Stores upgrade-safe customizations such as custom field definitions, user interface
layouts, and business logic hooks.

•
data: Key system files are located here, most notably the SugarBean base class which controls
the default application logic for all business objects in Sugar.

•
include: Many Sugar utility functions are located here, as well as other libraries that Sugar
utilizes as part of its operations. Most notable in this directory is the utils.php file that contains
the most widely used utility functions.

•
metadata: Contains relationship metadata for all many-to-many data relationships between the
business objects.

•
modules: Contains all modules in the system. Custom modules installed through the Module
Loader exist here as well.

Key Concepts

These are the main files, classes and application concepts that comprise the Sugar platform.

Application Concepts

•
Controller: Directs all incoming page requests. This can be overridden in each module to
change the default behavior and relies on Entry point parameters (described below) to serve the
appropriate page.

• Views: A set of user interface actions managed by the Controller, the default views in Sugar
include the Detail View, Edit View, and List View.

•

Display strings: Sugar is fully internationalized and localizable. Every language pack has its
own set of display strings which is the basis of language localization. There are two types of
display strings in the Sugar application: application strings and module strings. Application
strings contain the user interface labels displayed globally throughout the application. The
$GLOBALS[‘app_strings’] array contains these labels. The $GLOBALS[‘app_list_strings’] array contains

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
00_Preface

Updated: Thu, 21 Nov 2013 00:53:21 GMT
Powered by 10

the system-wide drop-down list values. Each language has its own application strings variables.
The $GLOBALS[‘mod_strings’] array contains strings specific to the current, or in-focus, module.

•

Drop-down lists: Drop-down lists are represented as name => value array pairs located in
the application strings mentioned above. The name value is stored in the database where the
value is displayed in the Sugar User Interface (UI). Sugar enables you to create and edit drop-
down lists and their values through the UI in Studio. Use the handy get_select_options_with_id()

utility function to help render the <select> input options to work with drop-down lists in Edit
Views. Use the translate() utility function to translate the string key you are working with into the
user’s currently selected display language.

Files

•

SugarBean.php: This file located under the <sugar root>/data folder contains the
SugarBean base class used by all business entity or module objects. Any module that reads,
writes, or displays data will extend this class. The SugarBean performs all of the heavy lifting
for data interactions, relationship handling, etc.

• modules.php: The modules.php file contains several variables that define which modules are
active and usable in the application.

Variables

•
$dictionary: The $dictionary array contains all module field variable definitions (vardefs), as
well as the relationship metadata for all tables in the database. This array is dynamically built
based upon the vardefs.php definitions.

Entry Points

The primary user interface entry point for Sugar is through index.php located in the root Sugar folder.
The main parameters for most calls are:

• module: The module to be accessed as part of the call

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
00_Preface

Updated: Thu, 21 Nov 2013 00:53:21 GMT
Powered by 11

• action: The action within the module

• record: The record ID

The following is a sample URL for a Sugar call:

http://www.yoursugarsite.com/
index.php?module=Contacts&action=DetailView&record=d545d1dd-0cb2-d614-3430-45df72473cfb

This URL invokes the Detail View action from within the Contacts module to display the record denoted
by the record request value.

Other commonly used parameters are return_module , return_action, and return_id. This group of
request parameters is used when a user cancels an action such as creating or editing a record.

Note: As of Sugar 5.1, entry points were consolidated into index.php. Previous versions had other files
as entry points into the application.

Module Framework
All modules, out-of-the-box (OOTB) or custom, are placed in the <sugar root>/modules/folder.
Modules are created to represent an object (such as Contacts) in Sugar, store the object’s data points
in the database, and provide a UI to create, edit, and delete object records.

The Application Framework section previously mentions an example of a typical call for a Detail View
action within a module. There are five main actions for a module:

•

List View: This Controller action enables the search form and search results for a module. Users
can perform actions such as delete, export, update multiple records (mass update), and drill into
a specific record to view and edit the details. Users can see this view by default when they click
one of the module tabs at the top of the page. Files in each module describe the contents of the
list and search view.

•

Detail View: A Detail View displays a read-only view of a particular record. Usually, this is
accessed via the List View. The Detail View displays the details of the object itself and related
items (sub-panels).
Sub-panels are mini List Views of items that are related to the parent object. For example, Tasks
assigned to a Project, or Contacts for an Opportunity will appear in sub-panels in the Project or
Opportunity Detail View.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
00_Preface

Updated: Thu, 21 Nov 2013 00:53:21 GMT
Powered by 12

http://www.yoursugarsite.com/index.php?module=Contacts&action=DetailView&record=d545d1dd-0cb2-d614-3430-45df72473cfb
http://www.yoursugarsite.com/index.php?module=Contacts&action=DetailView&record=d545d1dd-0cb2-d614-3430-45df72473cfb

<module>/metadata/detailviewdefs.php defines a module's Detail View page layout.
<module>/metadata/subpaneldefs.php defines the subpanels that are displayed in the
module's Detail View page.

•
Edit View: The Edit View page is accessed when a user creates a new record or edits details of
an existing one. Edit View can also be accessed directly from the List View. <module>/
metadata/editviewdefs.php defines a module's Edit View page layout.

• Save: This Controller action is processed when the user clicks Save in the record’s Edit View.

• Delete: This action is processed when the user clicks Delete in the Detail View of a record or in
the Detail View of a record listed in a sub-panel.

The following are driven by the UI framework. This framework relies on metadata files in the requested
module.

• <module>/metadata/listviewdefs.php describes the layout of the List View.

• <module>/metadata/searchdefs.php describes the search form tabs above the List View.

• <module>/metadata/editviewdefs.php describes the layout of the Edit View.

• <module>/metadata/detailviewdefs.phpdescribes the layout of the Detail View.

In addition to the action files described above, the following files are located in the folder.

•
forms.php: This file contains two functions to render specific JavaScript for validation or other
actions during edits/saves. By default you can leave these empty and have them return ‘’;

•
Menu.php: This file is responsible for rendering the Shortcuts menu, which was renamed as
Actions menu as of Sugar 6.0. In Community Edition, the Actions menu displays below the
module tabs and the Last Viewed bar. In Sugar Ultimate, Enterprise, Corporate, and Professional

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
00_Preface

Updated: Thu, 21 Nov 2013 00:53:21 GMT
Powered by 13

editions, the Actions menu displays on every module tab. By default, you usually add a link to
create a new record, and a link to the List View to search.

•

Popup.php: This file acts as a wrapper to the central Popup class located under the utils folder.
It is called when a module wants to get a popup list of records from a related module. The
central Popup class uses the Popup_picker.html and <MODULE_NAME>/metadata/
popupdefs.php file to render the popup.

• Popup_picker.html: This is used by the central Popup class to display a module’s pop-ups.

•
vardefs.php: The vardefs.php metadata file defines db and non-db fields for Sugar objects as
well as relationships between objects.

•
field_arrays.php: This file is deprecated as of Sugar version 5.1. It has been phased out over
time with the addition of metadata structures in the application, most notably the vardefs
metadata.

The following image displays the subfolders within a module folder:

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
00_Preface

Updated: Thu, 21 Nov 2013 00:53:21 GMT
Powered by 14

The following sub-folders are located in a module folder.

•

Sugar Dashlets: These are drag-and-drop forms displayed on the Sugar Home and
Dashboard tabs. Sugar Dashlets display any data (including data from external connectors),
and List View and Chart data for the modules. As a developer of a custom module, you can
create a Sugar Dashlet for your new module. For each Sugar Dashlet you create, you will
place the necessary files in the <MODULE_NAME>/Dashlets folder.

•

language: This folder holds the strings files for the module. By default you will have an
en_us.lang.php file containing ALL strings used by your module. These strings are

represented by the $mod_strings variable accessed at any time after aglobal
$mod_stringcall. The .html files located in this folder are used by the Help subsystem.

Sugar provides the capabilities for multi-language support and dynamic loading via the
admin panel of new language packs.

•

metadata: Module-specific metadata files have been added to this folder with the addition of
more metadata and extensibility into the Sugar Platform. Files in this directory include:
additionaldetails.php which defines the content of the pop-up displayed in the List Views;
listviewdefs.php which defines the columns displayed on the List View page;
popupdefs.php, which defines the search fields and list columns for a module’s popup;
SearchFields.php, which defines the Basic Search and Advanced Search forms seen in the
List View page; and
studio.php, which defines how the Studio tool interacts with a module's metadata files.

•

subpanels: This folder stores the definitions of a module’s sub-panels when the module is
related in a one-to-many or many-to-many fashion. You can add any number of versions in
the default.php file. You can also create custom versions of sub-panels of other modules to
be displayed by your custom module.
For example, you can relate a custom module with the Contacts module and have a
Contacts subpanel under the Detail View. You could build and place a ForWidgets.php file
under the <sugar root>/modules/Contacts/subpanels/ folder. The file name is
referenced by the subpanel_name parameter called from a layout_defs.php definition.

• tpls: This folder holds Smarty template files used for Quick Create forms.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
00_Preface

Updated: Thu, 21 Nov 2013 00:53:21 GMT
Powered by 15

•

views: This folder contains files that can override the default Model-View-Controller (MVC)
framework view files. View files can perform multiple actions on the Smarty template or
outputted HTML, allowing developers to modify and extend the default UI display classes and
take full control of the user interface.

User Interface Framework
SugarCRM uses an implementation of the Model-View-Controller (MVC) pattern as the base of all
application interactions. Working closely with the MVC framework is a metadata-driven UI framework
where the high-level specification of parts of the user interface is described in a metadata structure.

Extension Framework
The extension framework in Sugar enables you to implement customizations of existing modules or
create new modules. You can extend most of the functionality of Sugar through the various extension
framework capabilities in an upgrade-safe manner. The Module Builder tool and Studio tool available in
the Admin section enable you to make the customizations outlined below. You can then further extend
your system by adding upgrade-safe custom code. The areas open to extension are:

• Modules: Create new modules and add them to Sugar

• Vardefs: Add custom fields to existing modules with the addition of your custom module

•
Relationships: Create new relationships between your custom module(s) and existing
modules

• SubPanels: Create/add new sub-panel definitions to existing modules

• Strings: Override or add to module and application strings

• Menus: Override or add to Actions menus

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
00_Preface

Updated: Thu, 21 Nov 2013 00:53:21 GMT
Powered by 16

•
Layout Defs: Specify the displayed subpanels and the order in which they are displayed.
Create the layout definition for a custom module and add it as a sub-panel to the layout
definition of an existing module.

Sugar Dashlets
Sugar Dashlets is a framework that provides for Sugar Dashlet containers to be included in the Sugar UI.
Sugar Dashlet container objects display and interact with Sugar module data, with external sources such
as RSS feeds, and with web services like Google Maps. Released originally in Sugar 4.5, Sugar Dashlets
are a powerful new way to combine highly functional mash-ups in an attractive and easily tailored AJAX-
based UI framework. Sugar Dashlets, located on the Sugar Home page, allow for the customization
through simple drag-and-drop tools. The Sugar Dashlet Framework allows developers to easily create
new Sugar Dashlets that can be installed in SugarCRM instances through the Module Loader.

Web Services
Sugar provides a Web Services API interface for developers to build integrations with Sugar for reading
and writing data. Sugar provides Web Services APIs through the NuSOAP PHP implementation of the
SOAP and REST protocol. SOAP (Simple Object Access Protocol) is used for making Remote Procedure
Calls through the HTTP protocol by relaying messages in XML. The SugarSoap APIs, built on top of the
NuSOAP PHP library, are included in the Sugar Community, Sugar Professional, Sugar Corporate, Sugar
Enterprise, and Sugar Ultimate editions. REST (Representational State Transfer) is used for making
method calls through HTTP protocol by sending and receiving messages in JSON/Serialize format.
Framework supports the addition of multiple formats for REST. For example, you can add XML format to
send and receive data.

Connectors
The Cloud Connector framework enables developers to integrate data from external web services and
widgets into their Sugar installation. Data from existing modules such as Accounts, Contacts, and Leads
may act as inputs to retrieve external data.

The Connector classes inside of SugarCRM create a framework for integrating third party systems within
Sugar. Currently there are three different base integrations. Documents allows SugarCRM to upload
documents to a third party system, download documents from that system, and in future allow
SugarCRM to setup sharing of those documents (if supported by the third party system). Meetings help
SugarCRM integrate with external conference room systems or other meeting systems, enabling creation
and editing of meetings, inviting attendees to the meeting, and including external meeting information in
the email invitation. The Feed integration type allows SugarCRM to pull newsfeed data in from third party
sources and display it in the My Activity Stream on the user's homepage.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
00_Preface

Updated: Thu, 21 Nov 2013 00:53:21 GMT
Powered by 17

For Community Edition, Sugar supports LinkedIn©’s Company Insider widget and InsideView. Use this as
an example connector to learn the framework and create your own. Sugar Ultimate, Sugar Enterprise,

Sugar Corporate, and Sugar Professional support additional connectors, such as Hoovers© , Zoominfo,
Google Docs, Twitter, Facebook, GoToMeeting, LotusLive, and WebEx, and have the ability to merge the
data into existing Sugar records.

The main components for the framework are factories, source, and formatter classes.

Factories return appropriate source or formatter instance for a connector. Sources encapsulate the
retrieval of data as a single record, or a list, or records of the connectors. Formatters render the display
elements of the connectors. For more information, see Chapter 4 Customizing Sugar.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 18

Application Framework
1. Overview

2. Entry Points

2.1. Sugar 5 to Sugar 6 Upgrade Implications

2.1.1. Backwards Compatibility with Custom Code

3. File Caching

4. Sugar Dashlets

4.1. Sugar Dashlet Files

4.2. Templating

4.3. Categories

4.4. Sugar Dashlet base class

4.5. Sugar Dashlets JavaScript

5. Browser JavaScript

5.1. Accessing Language Pack Strings

5.2. Quicksearch

5.2.1. Requirements for a QuickSearch field

5.2.2. Support for custom/include/Smarty/plugins for custom code

6. ACL

7. Scheduler

8. Databases

8.1. Indexes

8.2. Primary Keys, Foreign Keys, and GUIDs

9. Logger

9.1. Logger Level

9.2. Log File Name

9.3. Log File Extension

9.4. Log File Date Format

9.5. Max Log File Size

9.6. Max Number of Log Files

9.7. Log Rotation

9.8. Custom Loggers

10. Web Services

10.1. SOAP

10.1.1. SOAP Protocol

10.2. REST

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 19

10.2.1. REST Protocol

10.3. SOAP vs. REST

10.4. Core Calls

10.4.1. Call: get_entry()

10.4.2. Call: get_entries()

10.4.3. Call: get_entry_list()

10.4.4. Call: set_relationship()

10.4.5. Call: set_relationships()

10.4.6. Call: get_relationship()

10.4.7. Call: set_entry()

10.4.8. Call: set_entries()

10.4.9. Call: login()

10.4.10. Call: logout()

10.4.11. Call: get_user_id()

10.4.12. Call: get_module_fields()

10.4.13. Call: seamless_login()

10.4.14. Call: set_note_attachment()

10.4.15. Call: get_note_attachment()

10.4.16. Call: set_document_revision()

10.4.17. Call: get_document_revision()

10.4.18. Call: search_by_module()

10.4.19. Call: get_available_modules()

10.4.20. Call: get_user_team_id()

10.4.21. Call: set_campaign_merge()

10.4.22. Call: get_entries_count()

10.4.23. Call: get_report_entries()

10.4.24. Call: get_quotes_pdf()

10.4.25. Call: get_report_pdf()

10.4.26. Call: get_module_fields_md5()

10.4.27. Call: get_module_layout()

10.4.28. Call: get_module_layout_md5()

10.4.29. Call: get_last_viewed()

10.4.30. Call: get_upcoming_activities()

10.4.31. Sample Code

10.4.31.1. Sample Request for User Login

10.4.32. Upgrade-safe extensibility

10.5. SOAP Errors

11. Connectors Framework

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 20

11.1. Factories

11.2. Sources

11.3. Formatters

11.4. Class definitions

11.5. Login method definitions

11.5.1. loadEAPM

11.5.2. checkLogin

11.5.3. quickCheckLogin

11.5.4. logOff

11.6. Document Method Definitions

11.6.1. uploadDoc

11.6.2. downloadDoc

11.6.3. shareDoc

11.6.4. deleteDoc

11.6.5. searchDoc

11.6.6. loadDocCache

Overview
The Sugar application code is based on a modular framework with secure entry points into the
application (e.g. index.php or soap.php). All modules, core or custom, must exist in the <sugar root>/
modules/ folder. Modules represent business entities or objects in Sugar such as Contacts, and the
object has fields or attributes that are stored in the database, as well as a user interface (UI) for the
user to create and modify records. A module encompasses definitions for the data schema, user
interface, and application functionality.

Entry Points
All entry points into the Sugar application are pre-defined to ensure that proper security and
authentication steps are applied consistently across the entire application.

•
campaign_trackerv2.php – used by the Campaign Management module for tracking campaign
responses

•
cron.php – used by the Windows Scheduler Service or the cron service on Linux and Unix for
executing the Sugar Scheduler periodically

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 21

• index.php – default entry point into the Sugar application

• install.php – used for initial install

• maintenance.php – invoked when the application is down for maintenance

• silentUpgrade.php – Used for silent installer

• soap.php – entry point for all SOAP calls

• rest.php – entry point for all REST calls

• vcal_server.php – used for syncing information to Outlook

Sugar 5 to Sugar 6 Upgrade Implications

One of the many code re-factoring changes made as of Sugar 5.1 was to consolidate the number of entry
points into the application as well as re-routing the current entry points through the MVC framework. An
entry point is a PHP file that can be called either through the URL or from the operating system’s
command line to invoke a Sugar process. For example, calling the home page of the application through
the URL, or starting the Scheduler through the command line. Consolidating the entry points has also
enabled to secure the application better and improve quality by ensuring that each request goes through
the same initialization code.

Note: To make changes to the entry_point_registry.php upgrade safe, users should create and/or update
the following file so that changes will not be over-written when upgrading to newer versions of Sugar:
custom/include/MVC/Controller/entry_point_registry.php

Backwards Compatibility with Custom Code

Upgrading presents some backwards compatibility problems. Update your code if you have custom code
that relies on a deprecated entry point such as a custom Quote template that may have called pdf.php,
which is no longer a stand-alone entry point. Follow the steps listed below to change the URL reference:

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 22

1.
Locate the entry point file name in the include/MVC/Controller/entry_point_registry.php.
This is in the file key in the sub-array. Make note of the key of that array

2.
For the pdf.php entry point, the array appears in include/MVC/Controller/
entry_point_registry.php as:

'pdf' => array('file' => 'pdf.php', 'auth' => true),

Use the pdf part in the next step.

3. Change the URL reference from the current reference to:

index.php?entryPoint=<<entrypoint>>

For the above pdf.php example, we would change our references from:

http://<your site>/pdf.php

to

http://<your site>/index.php?entryPoint=pdf

The only remaining entry point that does not use this new index.php URL pattern
(and, therefore, continues to be a valid entry point) is:

•
campaign_tracker.php – used by the Campaign Management module for tracking campaign
responses (deprecated as of Sugar 5.1.0)

•
cron.php – used by the Windows Scheduler Service or the cron service on Linux and Unix for
executing the Sugar Scheduler periodically

• index.php – default entry point into the Sugar application

• install.php – used for initial install

• maintenance.php – invoked when the application is down for maintenance

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 23

• metagen.php – Deprecated as of Sugar 5.1.0

• silentUpgrade.php – used for silent installer

• soap.php – entry point for all SOAP calls

• rest.php – entry point for all REST calls

• vcal_server.php – used for syncing information to Outlook

File Caching
Much of the user interface is built dynamically using templates from metadata and language string files.
Sugar implements a file caching mechanism to improve the performance of the system by reducing the
number of static metadata and language files that need to be resolved at runtime. This directory stores
the cached template and language string files.

Activate the Developer Mode (Admin->System Settings->Advanced->Developer Mode) to ignore these
cached files during development activities in Sugar. This is especially helpful when you are directly
altering templates, metadata, or language files. The system automatically refreshes the file cache in
Module Builder and Studio. Deactivate the Developer Mode after completing customizations because this
mode degrades system performance.

Sugar Dashlets

Sugar Dashlets use the abstract factory design pattern. Individual dashlets extend the base abstract

class Dashlet.php, List View Dashlets extend the base abstract class DashletGeneric.php, and Chart
Dashlets extend the base abstract class DashletGenericChart.php.

Sugar Dashlet instances must be stored in one of the following directories:

• modules/moduleName/Dashlets/

• custom/modules/moduleName/Dashlets/

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 24

http://en.wikipedia.org/wiki/Abstract_factory_pattern

Sugar Dashlet developers use the custom/ directory to upgrade-safe their Sugar Dashlets. Sugar
Dashlets offered in base Sugar releases are located in the standard modules/ directory.

Sugar Dashlet Files

The file name containing the main Sugar Dashlet code must match the Sugar Dashlet’s class name. For

example, the Sugar Dashlet class JotPadDashlet is located in the file /Home/Dashlets/

JotPadDashlet/JotPadDashlet.php. The JotPadDashlet is a sample Sugar Dashlet released originally
in Sugar 4.5. It serves as a useful example from which to begin your development efforts.

A metadata file accompanies each Sugar Dashlet. It contains descriptive information about the Sugar
Dashlet defined below:

$DashletMeta['JotPadDashlet'] = array

(

'title' => 'LBL_TITLE',

'description' => 'LBL_TITLE',

'icon' => 'themes/Sugar/images/Accounts.gif',

'category' => 'Tools'

);

The naming convention for the metadata file is className.meta.php, where className is the name of
the Sugar Dashlet. The metadata file must reside in the same directory as the Sugar Dashlet code. For
JotPad Dashlet, the meta file is stored in modules/Home/Dashlets/JotPadDashlet/
JotPadDashlet.meta.php.

The ‘title’ and ‘description’ elements are translated. If the values here match a key in the array
$DashletStrings (from the language file) then they will be translated, otherwise it will display the literal
string. (It is a best practice to use translatable language strings so that your Sugar Dashlet is
international!)

Language files have a similar naming convention: className.locale.lang.php (for example
/Dashletsmodules/Home/Dashlets/JotPadDashlet/JotpadDashlet.en_us.lang.php)

Icon files can either be defined in the .metadata file or included in the Sugar Dashlet Directory (for
example /Dashletsmodules/Home/Dashlets/JotPadDashlet/JotPadDashlet.icon.png).

Sugar scans for image files in the corresponding Sugar Dashlet directory.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 25

Templating

The suggested templating engine for Sugar Dashlets is Smarty. This is not a requirement.

Categories

There are five categories for Sugar Dashlets.

• Module Views – Generic views of data in modules

• Portal – Sugar Dashlets that allow access to outside data (RSS, Web services, etc)

• Charts – Data charts

• Tools – Various tools such as notepad, calculator, or world clock

• Miscellaneous - Any other Sugar Dashlet

Sugar Dashlet base class

The main Sugar Dashlet base class is include/Dashlets/Dashlet.php and all Sugar Dashlets should

extend this class.

Assign a unique ID to each Sugar Dashlet. This ID is used in the displayed HTML document and enable
multiple Sugar dashlets of the same type to be included on the page.

Sugar Dashlets are stored in the table user_preferences under the Dashlets name and home
category.

The options element stores the options for the Sugar dashlet. This element is loaded/stored by
storeOptions /loadOptions functions in the base Dashlet class.

Sugar Dashlets JavaScript

Sugar Dashlet utility functions are located in include/JavaScript/Dashlets.js and contains the
following:

postForm: function(theForm, callback) {}

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 26

http://www.smarty.net/

postForm is used to post the configuration form through AJAX. The callback to remove the configuration
dialog is SUGAR.sugarHome.uncoverPage.

callMethod: function(DashletId, methodName, postData, refreshAfter, callback) {}

callMethod is a generic way to call a method in a Dashlet class. Use this function to generically call a

method within your Dashlet class (php side). Refresh your Dashlet after a call and utilize a callback
function (optional). This method can also be used to proxy AJAX calls to Web services that do not exist in
the Sugar installation, for example, Google Maps Mash-up.

Browser JavaScript
Sugar is a web-based application. As a result, executing custom logic on the client-side (for example,
validating data before posting it back to the server) requires writing JavaScript. This section outlines the
JavaScript constructs available to the developer.

Sugar's production JavaScript files are compressed with the JSMin library to improve performance. This
process reduces JavaScript file sizes and download times. The originally formatted JavaScript files are
located in the /jssource directory. Make JavaScript code changes in the /jssource/src_files folders
and use the Rebuild JS Compressed Files option in Admin->Repair.

Accessing Language Pack Strings

All language pack strings are accessible within the browser-side JavaScript. Use the following JavaScript
call to access these strings:

// LBL_LOADING string stored in $app_strings

SUGAR.language.get('app_strings', 'LBL_LOADING');

// LBL_LIST_LAST_NAME string stored in Contacts $mod_strings

SUGAR.language.get('Contacts', 'LBL_LIST_LAST_NAME');

These JavaScript language files are cached. Rebuild the JavaScript files from the Repair console in the
Admin section if the language files are changed. This removes the cache files and rebuilds the JavaScript
files when needed. It also increments js_lang_version in sugar_config to recache the JavaScript files
in the user's browser.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 27

Quicksearch

As of version 5.1, Sugar uses a type-ahead combo box system called QuickSearch that utilizes
components from the YUI framework. The Sugar QuickSearch (SQS) code resides in the file
<sugar_root>/include/javascript/quicksearch.js. This file, along with the YUI dependencies are
grouped into <sugar_root>/include/javascript/sugar_grp1_yui.js which is loaded in all the main
pages of SugarCRM. A custom YUI AutoComplete widget is used to pull data through an AJAX call to

http://yourserver/SugarCRM/index.php. This then accesses the file <sugar_root>/modules/

Home/quicksearchQuery.php.

The browser initiates an AJAX call through JavaScript to the server a short delay after the last user input
takes place in the browser. A call is then made requesting up to 30 results per result set.

The first ten results are displayed in the browser. If the user refines the search, and the result set is a
subset of the first call then no additional call is made. If the result set of the first call is equal to the limit
(30), then an additional call is made.

Requirements for a QuickSearch field

Requirements for a QuickSearch field are listed below:

? Class of the field is set to sqsEnabled

? Field is not set to disabled or readOnly

? JS array sqs_objects is defined and contains the field name

? sugar_grp1_yui.jsmust be loaded on the page

Custom Parameter

sqsNoAutofill: Add this string to the field class to disable automatic filling of the field on Blur.

Metadata example:

array(

'name' => 'account_name',

'displayParams' => array(

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 28

http://yourserver/SugarCRM/index.php

'hiddeButtons'=>'true',

'size'=>30,

'class'=>'sqsEnabled sqsNoAutofill'

)

),

Support for custom/include/Smarty/plugins for custom code

When developing upgrade safe Smarty template files, you can now add Smarty functions and modifiers
in the custom directory /custom/include/Smarty/plugins instead of adding them in the base
directory /include/Smarty/plugins. Use a proper naming convention for the custom functions/
modifiers to avoid duplicates. Also, prefix the custom files to ensure that they will not interfere with
future development of the base product.

ACL
ACLs, or Access Control Lists, are used to restrict access to Sugar modules, and the data and actions
available to users within Sugar modules (for example, Delete and Save). ACLs are defined in the Roles
area of Sugar Admin. Sugar Professional, Corporate, Enterprise, and Ultimate editions restrict user
access to specific fields.

Use the following code to verify if the current user has access to a particular action:

if (ACLController::checkAccess($category, $action, $is_owner, $type)) {

// your code here

}

Parameters used in the above code are described below:

•
$category – Corresponds to the module directory where the bean resides. For example:
Accounts.

•
$action – The action you want to check against. For example, Edit. These actions correspond to
actions in the acl_actions table as well as actions performed by the user within the application.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 29

•
$is_owner – verifies if the owner of the record is attempting an action. Defaults to false. This is
relevant when the access level = ALLOW_OWNER.

• $type – Defaults to module.

See the Roles section in the Sugar Application Guide for a list of actions and their possible values.

Scheduler
Sugar provides a Scheduler service that can execute predefined functions asynchronously on a periodic
basis. The Scheduler integrates with external UNIX systems and Windows systems to run jobs that are
scheduled through those systems. The typical configuration is to have a UNIX cron job or a Windows
scheduled job execute the Sugar Scheduler service every couple of minutes. The Scheduler service
checks the list of Schedulers defined in the Scheduler Admin screen and executes any that are currently
due.

A series of Schedulers are defined by default with every Sugar installation such as Process Workflow
Tasks and Run Report Generation Scheduled Tasks.

Databases
All five Sugar editions support the MySQL and Microsoft SQL Server databases. Sugar Enterprise and
Sugar Ultimate also support the Oracle database. In general, Sugar uses only common database
functionality, and the application logic is embedded in the PHP code. Sugar does not use database
triggers or stored procedures. This design simplifies coding and testing across different database
vendors. The only implementation difference across the various supported databases is column types.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 30

Sugar uses the mysql PHP extension for MySQL support (or mysqli if it is enabled), mssql extension for
Microsoft SQL Server support, and oci8 extension for Oracle support. Sugar does not support generic
ODBC access or other database drivers such as PDO.

Indexes

Indexes can be defined in the main or custom vardefs.php for module in an array under the key indices.
See below for an example of defining several indices:

'indices' => array (

array(

'name' => 'idx_modulename_name',

'type' => 'index',

'fields' => array('name'),

),

array(

'name' => 'idx_modulename_assigned_deleted',

'type' => 'index',

'fields' => array('assigned_user_id', 'deleted'),

),

),

The name of the index must start with idx_ and must be unique across the database. Possible values for
type include primary for a primary key or index for a normal index. The fields list matches the column
names used in the database.

Primary Keys, Foreign Keys, and GUIDs

By default, Sugar uses globally unique identification values (GUIDs) for primary keys for all database

records. Sugar provides a create_guid() utility function for creating these GUIDs in the following

format: aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee. The primary key column length is 36 characters.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 31

The GUID format and value has no special meaning (relevance) in Sugar other than the ability to match
records in the database. Sugar links two records (such as an Accounts record with a Contacts record)
with a specified ID in the record type relationship table (e.g. accounts_contacts).

Sugar allows a primary key to contain any unique string. This can be a different GUID algorithm, a key
that has some meaning (such as bean type first, followed by info), an external key, and/or auto-
incrementing numbers (converted to strings). Sugar chose GUIDs over auto-incrementing keys to allow
for easier data synchronization across databases and avoid primary key collisions when one of the
following occurs:

• Sugar Offline Client (part of Sugar Enterprise) syncs data with the main Sugar installation

• Sugar SOAP APIs are used for data synchronization

• Tools like Talend are used for data synchronization.

Offline Client uses GUIDs for primary keys for ease of implementation and simpler handling of data
conflicts compared to other schemes. If a developer changes Sugar to use some other ID scheme and
needs to accommodate data synchronization across data stores, IDs need to be partitioned ahead of time
or a system similar to the Sugar implementation for Cases, Quotes, and Bugs created. For modules like
these that have human-readable ID numbers (integers) that need to be synchronized across databases,
Sugar implements a server ID that is globally unique and concatenates it with an incrementing Case,
Quotes or Bug number. Attempting such a change to Sugar requires some careful planning and
implementation.

If data synchronization is not an issue, the primary key format can be changed to some other unique
string.

You can also import data from a previous system with one primary key format and make all new records
in Sugar use the GUID primary key format. All keys need to be stored as unique strings with no more
than 36 characters.

To perform any of the following:

• Implement a new primary key method

•
Import existing data with a different primary key format based on the existing GUID mechanism
for new records

Make note of the following:

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 32

•

Quote characters: Sugar expects primary keys to be string types and will format the SQL with
quotes. If you change the primary key types to an integer type, SQL errors may occur since
Sugar stores all ID values in quotes in the generated SQL. The database may be able to ignore
this issue. MySQL running in Safe mode experiences issues, for instance.

•

Case-sensitivity: IDs abc and ABC are treated the same in MySQL but represent different values
in Oracle. When migrating data to Sugar, some CRM systems may use case sensitive strings as
their IDs on export. If this is the case, and you are running MySQL, you need to run an
algorithm on the data to make sure all of the IDs are unique. One simple algorithm is to MD5 the
ids that they provide. A quick check will let you know if there is a problem. If you imported
80,000 leads and there are only 60,000 in the system, some may have been lost due to non-
unique primary keys, as a result of case sensitivity.

•

Sugar only tracks the first 36 characters in the primary key. Any replacement primary key will
either require changing all of the ID columns with one of an appropriate size or to make sure
you do not run into any truncation or padding issues. MySQL in some versions has had issues
with Sugar where the IDs were not matching because it was adding spaces to pad the row out to
the full size. MySQL’s handling of char and varchar padding has changed in some of the more
recent versions. To protect against this, you will want to make sure the GUIDs are not padded
with blanks in the DB.

Logger
The Sugar Logger allows developers and system administrators to log system events and debugging
information into a log file. The Sugar code contains log statements at various points, which are triggered
based on the logging level.

For example, to write a message to the sugarcrm.log file when the log level is set to ‘fatal’, add the
following in your code:

$GLOBALS['log']->fatal('my fatal message');

Logger Level

The logger level determines how much information is written to the sugarcrm.log file. You will find the
sugarcrm.log file in the root of your Sugar installation.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 33

Valid values are 'debug', 'info', 'error', 'fatal', 'security', and 'off'. The logger will log information for the
specified and higher logging levels. For example if you set the log level to 'error' then you would see logs
for 'error', 'fatal', and 'security'. You also may define your own log levels on the fly. For example if you
set the value to 'test' then only values logged to $GLOBALS['log']->test('This is my test log message'); would
be logged. You should avoid using the logging level of ‘off’. The default value is 'fatal'.

$GLOBALS['sugar_config']['logger']['level'] = 'debug';

You can also force the log level in your code by using:

$GLOBALS['log']->setLevel('debug');

Log File Name

You may concatenate static strings, variables, and function calls to set this value. For example if you
wish to have monthly logs set this to 'sugarcrm' . date('Y_m') and every day it will generate a new log file.
The default value is 'sugarcrm'.

$GLOBALS['sugar_config']['logger']['file']['name']

Log File Extension

The defaults value is '.log'. Therefore the full default log file name is ‘sugarcrm.log’.

$GLOBALS['sugar_config']['logger']['file']['ext']

Log File Date Format

The date format for the log file is any value that is acceptable to the PHP strftime() function. The default

is '%c'. For a complete list of available date formats, please see the strftime() PHP documentation.

$GLOBALS['sugar_config']['logger']['file']['dateformat']

Max Log File Size

This value controls the max file size of a log before the system will roll the log file. It must be set in the
format '10MB' where 10 is number of MB to store. Always use MB as no other value is currently
accepted. To disable log rolling set the value to false. The default value is '10MB'.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 34

http://us.php.net/strftime

$GLOBALS['sugar_config']['logger']['file']['maxSize']

Max Number of Log Files

When the log file grows to the 'maxSize' value, the system will automatically roll the log file. The
'maxLogs' value controls the max number of logs that will be saved before it deletes the oldest. The
default value is 10.

$GLOBALS['sugar_config']['logger']['file']['maxLogs']

Log Rotation

The Sugar Logger will automatically rotate the logs when the 'maxSize' has been met or exceeded. It will
move the current log file to <Log File Name> . 1 . <Log Extension>. If <Log File Name> . 1 . <Log
Extension> already exists it will rename it to <Log File Name> . 2 . <Log Extension> prior. This will
occur all the way up to the value of 'maxLogs'.

Custom Loggers

You can also extend the logger to integrate a different logging system into SugarCRM. For example, you
can write log entries to a centralized application management tool, or write messages to a developer tool
such as FirePHP.

To do this, you simply can create a new instance class that implements the LoggerTemplate interface.
The below code is an example of how to create a FirePHP logger.

class FirePHPLogger implements LoggerTemplate

{

/**

* Constructor

*/

public function __construct()

{

if (isset($GLOBALS['sugar_config']['logger']['default'])

&& $GLOBALS['sugar_config']['logger']['default'] == 'FirePHP')

LoggerManager::setLogger('default','FirePHPLogger');

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 35

}

/**

* see LoggerTemplate::log()

*/

public function log(

$level,

$message

)

{

// change to a string if there is just one entry

if (is_array($message) && count($message) == 1)

$message = array_shift($message);

switch ($level)

{

case 'debug':

FB::log($message);

break;

case 'info':

FB::info($message);

break;

case 'deprecated':

case 'warn':

FB::warn($message);

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 36

break;

case 'error':

case 'fatal':

case 'security':

FB::error($message);

break;

}

}

}

You can specify which log levels this backend can use in the constuctor by calling the
LoggerManager::setLogger() method and specifying the level to use for this logger in the first
parameter; passing ‘default’ makes it the logger for all logging levels. The only method needing
implementing is the log() method, which writes the log message to the backend.

To have this logger used, put it in the /custom/include/SugarLogger/ directory with the naming
classname.php.

Web Services

SOAP

SugarCRM provides Web Services API’s through the NuSOAP PHP implementation of the SOAP protocol.
SOAP stands for "Simple Object Access Protocol." It is used for making Remote Procedure Calls through
the HTTP protocol by relaying messages in XML.

The SugarSoap API’s are built using the NuSOAP library and included in all five Sugar editions. You can
view the SugarSoap APIs at:

http://www.example.com/sugar/service/v2/soap.php

The SugarSoap WSDL (Web Services Description Language) is located at:

http://www.example.com/sugar/service/v2/soap.php?wsdl

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 37

http://www.example.com/sugar/service/v2/soap.php
http://www.example.com/sugar/service/v2/soap.php?wsdl

Thanks to a myriad of toolkits, it is easy to make effective use of SOAP Web Services from a variety of
programming languages, in particular with Sugar and the wide array of SOAP-based services that it
offers.

For these exercises, we will use PHP in conjunction with the NuSOAP Toolkit. You could, of course,
connect to SugarCRM through SOAP and write your application code in Java, C++ or a variety of other
SOAP-enabled programming languages.

Note: If the Sugar config.php variables site_url is wrong, SugarSoap will not work. Be sure to verify
this value before continuing.

SOAP Protocol

SOAP, a standard Web Services protocol implementation, is a way of exchanging structured information
of application functionality. The URL to SOAP is http://localhost/service/v2/soap.php, and the URL for
WSDL is http://localhost/service/v2/soap.php?wsdl. The WSDL file contains the descriptions for all
methods with input/output datatype.

See examples/SoapTestPortal2.php for more examples on usage.

Following is the complete SOAP flow.

REST

SugarCRM provides APIs through REST implementation. You can view SugarREST APIs at:

http://www.example.com/sugar/service/v2/rest.php

You can use /service/utils/SugarRest.js to make rest calls using javascript. Look at /service/test.html for
examples on how to make REST calls from jaavscript. You can also use curl module to make REST call
from server side. Look at the following example

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 38

http://localhost/service/v2/soap.php
http://localhost/service/v2/soap.php?wsdl
http://www.example.com/sugar/service/v2/rest.php

$url = $sugar_config[‘site_url’] . “/service/v2/rest.php”;

$result = doRESTCALL($url,
'login',array('user_auth'=>array('user_name'=>$user_name,'password'=>md5($user_password),
'version'=>'.01'), 'application_name'=>'SoapTest', 'name_value_list' => array(array('name' =>
'notifyonsave', 'value' => 'false'))));

function doRESTCALL($url, $method, $data) {

ob_start();

$ch = curl_init();

$headers = (function_exists('getallheaders'))?getallheaders(): array();

$_headers = array();

foreach($headers as $k=>$v){

$_headers[strtolower($k)] = $v;

}

// set URL and other appropriate options

curl_setopt($ch, CURLOPT_URL, $url);

curl_setopt ($ch, CURLOPT_POST, 1);

curl_setopt($ch, CURLOPT_HTTPHEADER, $_headers);

curl_setopt($ch, CURLOPT_HEADER, 1);

curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, 0);

curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);

curl_setopt($ch, CURLOPT_FOLLOWLOCATION, 0);

curl_setopt($ch, CURLOPT_HTTP_VERSION, CURL_HTTP_VERSION_1_0);

$post_data = 'method=' . $method . '&input_type=json&response_type=json';

$json = getJSONobj();

$jsonEncodedData = $json->encode($data, false);

$post_data = $post_data . "&rest_data=" . $jsonEncodedData;

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 39

curl_setopt($ch, CURLOPT_POSTFIELDS, $post_data);

$result = curl_exec($ch);

curl_close($ch);

$result = explode("\r\n\r\n", $result, 2);

print_r($result[1]);

$response_data = $json->decode($result[1]);

ob_end_flush();

//print_r($response_data);

return $response_data;

REST Protocol

Sugar uses the REST protocol to exchange application information. The URL for REST is http://localhost/
service/v2/rest.php. The input/output datatype for REST is JSON/PHP serialize. These datatype files,
SugarRestJSON.php and SugarRestSerialize.php, are in service/core/REST directory.

You can also define you own datatype. To do this, you need to create a corresponding
SugarRestCustomDataType.php file in the service/core/REST directory and override generateResponse()
and serve() functions.

The Serve function decodes or unserializes the appropriate datatype based on the input type; the
generateResponse function encodes or serializes it based on the output type. See service/test.html for
more examples on usage. In this file, the getRequestData function, which generates URL with json, is
both the input_type and the response_type. That is, the request data from the javascript to the server is
json and response data from server is also json. You can mix and match any datatype as input and
output. For example, you can have json as the input_type and serialize as the response_type based on
your application’s requirements.

Sugar also provides an example on how to use REST protocol to retrive data from other Sugar instances.
In the example, service/example.html uses the SugarRest.server_url variable to make a request to
Rest_Proxy.ph, which redirects this request to the appropriate Sugar instance and sends the response
back to service/example.html . This server_url variable is a REST URL to other Sugar instances from
which you want to retrieve data.

The REST flow is shown below.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 40

http://localhost/service/v2/rest.php
http://localhost/service/v2/rest.php

SOAP vs. REST

There are significant differences between how the REST and SOAP protocols function on an
implementation level (e.g. Performance, response size, etc). Deciding which protocol to use is up to the
individual developer and is beyond the scope of this guide. Starting in SugarCRM version 6.2.0, there are
some deviations between the protocols with the v4 API. There are three additional core calls that are
only made available through the REST protocol. The new calls are documented below in the Core Calls
section.

API Definitions

SugarCRM provides an application programming interface, Sugar Web Services API, to enable you to
customize and extend your Sugar application. As of version 5.5.0, Sugar provides an API for enhanced
performance and provides versioning to help extend your Sugar application in an upgrade-safe manner.

Versioning

All API classes are located in the Service directory. The URL for the Service directory is
http://localhost/service/vX/soap.php, where X is the version of the API that you wish to reference.
The following chart indicates which versions of the API are available along with the corresponding Sugar
version it was released with. If you are using a particular version of the API, note that we will not modify
the API signatures for existing versions. This ensures that you can safely upgrade your SugarCRM
instance without worrying about any potential impact to your existing API calls. New calls and features
will be released in a newer version of the API when they are made available.

API Version SugarCRM Version Comments

V2 5.5.0

V3 6.1.0

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 41

http://localhost/service/vX/soap.php

V3_1 6.1.0

V4 6.2.0 and above

The Service directory contains the following folders:

Folder
name

Folder definition and
details Variable definition and details

core A directory containing the
core classes

REST
A directory containing REST
protocols (for example, JSON
and PHP serialize classes)

A directory containing
version-specific classes for
SOAP and REST
implementation. This folder
contains the variables listed in
the rows below:

$webservice_class service class responsible for soap services -
SugarSoapService2

$webservice_path The location of the service class - V2/
SugarSoapService2.php

$registry_class Responsible for registering all the complex data
types and functions available to call - registry

$registry_path The location of registry class - service/v2/
registry.php

$webservice_impl_class The implementation class for all the functions –
SugarWebServiceImpl

$location The location of soap.php - '/service/v2/soap.php'

$soap_url
The URL to invoke
$GLOBALS['sugar_config']['site_url'].'/service/v2/
soap.php'

VX

Call webservices.php

core/webservice.php is responsible for
instantiating service class and calling different
helper methods based on the values of the
variables listed in this table.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 42

Core Calls
The supported calls in the API are listed and described in this section.

Call Description

Call: get_entry() Retrieves a single SugarBean based on the ID.

Call:get_entries() Retrieves multiple SugarBeans based on IDs. This API is
not applicable to the Reports module.

Call:get_entry_list() Retrieves a list of SugarBeans.

Call: set_relationship() Sets a single relationship between two beans where items
are related by module name and ID.

Call:set_relationships() Sets multiple relationships between two beans where items
are related by module name and ID.

Call: get_relationship()
Retrieves a collection of beans that are related to the
specified bean and, optionally, return relationship data for
the related beans.

Call: set_entry() Creates or updates a single SugarBean.

Call: set_entries() Creates or updates a list of SugarBeans.

Call: login() Logs the user into the Sugar application.

Call: logout() Logs out the user from the current session.

Call: get_server_info() Obtains server information such as version and GMT time.

Call: get_user_id() Returns the user_id of the user who is logged into the
current session.

Call:
get_module_fields()

Retrieves the vardef information on fields of the specified
bean.

Call: seamless_login() Performs a seamless login. This is used internally during
synchronization.

Call:
set_note_attachment() Adds or replaces an attachment to a note.

Call:get_note_attachment()Retrieves an attachment from a note.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 43

Call:
set_document_revision() Sets a new revision to the document

Call:
get_document_revision()

Allows an authenticated user with the appropriate
permission to download a document.

Call:
search_by_module()

Returns the ID, module_name, and fields for the specified
modules as specified in the search string.

Call:
get_available_modules()

Retrieves the list of modules available to the current user
logged into the system.

Call:
get_user_team_id()

Retrieves the ID of the default team of the user who is
logged into the current session.

Call:
set_campaign_merge() Performs a mail merge for the specified campaign.

Call:
get_entries_count() Retrieves the specified number of records in a module.

Call:get_quotes_pdf Retrieve a quote pdf in base64 encoding.

Call:get_report_pdf Retrieve a report pdf in base64 encoding

Call:get_module_layout Retreive the layout metadata for a given module and a
given view.

Call:get_module_layout_md5Retrieve the md5 of a specific layout for a given module.

Call:get_module_fields_md5Retrieve the computed md5 hash of the vardef information
for a given module

Call: get_last_viewed Retrieve a list of recently viewed records by module.

Call:
get_upcoming_activities

Retrieve a list of upcoming activities including Calls,
Meetings, Tasks, and Opportunities

Call: get_entry()

Retrieves a single SugarBean based on ID.
Syntax

get_entry(session, module_name, id,select_fields, link_name_to_fields_array, track view)
Arguments

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 44

Name Type Description

session String Session ID returned by a previous login call.

module_name String

The name of the module from which to retrieve
records.

Note: If you change the module’s tab name in
Studio, it does not affect the name that must be
passed into this method.

id String The SugarBean’s ID.

select_fields Array Optional. The list of fields to be returned in the
results.

link_name_to_fields_arrayArray

A list of link names and the fields to be returned
for each link name.

Example: 'link_name_to_fields_array' =>
array(array('name' => 'email_addresses', 'value'
=> array('id', 'email_address', 'opt_out',
'primary_address')))

track_view Boolean Indication if the retrieved record should be
tracked as being viewed.

Output

Name Type Description

entry_list Array The record’s name-value pair for the simple
datatypes excluding the link field data.

relationship_list Array The records link field data.

Call: get_entries()

Retrieves a list of SugarBeans based on the specified IDs.
Syntax
get_entries(session, module_name, ids, select_fields, link_name_to_fields_array)
Arguments

Name Type Description

session String Session ID returned by a previous login call.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 45

module_name String

The name of the module from which to retrieve
records.

Note: If you change the module’s tab name in
Studio, it does not affect the name that must be
passed into this method.

ids Array An array of SugarBean IDs.

select_fields Array Optional. The list of fields to be returned in the
results.

link_name_to_fields_arrayArray

A list of link names and the fields to be returned
for each link name.

Example: 'link_name_to_fields_array' =>
array(array('name' => 'email_addresses', 'value'
=> array('id', 'email_address', 'opt_out',
'primary_address')))

Output

Name Type Description

entry_list Array The record’s name-value pair for the simple
datatypes excluding the link field data.

relationship_list Array The records link field data.

Call: get_entry_list()

Retrieves a list of SugarBeans.
Syntax
get_entry_list(session, module_name, query, $order_by,offset, select_fields, link_name_to_fields_array,
max_results, deleted, favorites)
Arguments

Name Type Description

session String Session ID returned by a previous login call.

module_name String

The name of the module from which to retrieve
records.

Note: If you change the module’s tab name in
Studio, it does not affect the name that must
be passed into this method.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 46

query String The SQL WHERE clause without the word
“where”.

order_by String The SQL ORDER BY clause without the phrase
“order by”.

offset String The record offset from which to start.

select_fields Array Optional. A list of fields to include in the
results.

link_name_to_fields_arrayArray

A list of link names and the fields to be
returned for each link name.

Example: 'link_name_to_fields_array' =>
array(array('name' => 'email_addresses',
'value' => array('id', 'email_address',
'opt_out', 'primary_address')))

max_results String The maximum number of results to return.

deleted Number To exclude deleted records

Favorites Boolean If only records marked as favorites should be
returned.

Output

Name Type Description

result_count Integer The number of returned records.

next_offset Integer The start of the next page.

entry_list Array The records that were retrieved.

relationship_list Array The records’ link field data.

Call: set_relationship()

Sets a single relationship between two SugarBeans.
Syntax
set_relationship(session, module_name, module_id, link_field_name, related_ids)
Arguments

Name Type Description

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 47

session String Session ID returned by a previous login call.

module_name String

The name of the module from which to retrieve
records.

Note: If you change the module’s tab name in Studio,
it does not affect the name that must be passed into
this method.

module_id String The ID of the specified module bean.

link_field_name String The name of the field related to the other module.

related_ids Array IDs of related records

Output

Name Type Description

created Integer The number of relationships that were created.

failed Integer The number of relationships that failed.

deleted Integer The number of relationships that were deleted.

Call: set_relationships()

Sets multiple relationships between two SugarBeans.
Syntax
set_relationships(session, module_names, module_ids, link_field_names, related_ids)
Arguments

Name Type Description

session String Session ID returned by a previous login call.

module_names Array

The name of the module from which to retrieve
records.

Note: If you change the module’s tab name in
Studio, it does not affect the name that must be
passed into this method.

module_ids Array The ID of the specified module bean.

link_field_names Array The name of the field related to the other
module.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 48

related_id Array IDs of related records

Output

Name Type Description

created Integer The number of relationships that were created.

failed Integer The number of relationships that failed.

deleted Integer The number of relationships that were deleted.

Call: get_relationship()

Retrieves a collection of beans that are related to the specified bean and, optionally, returns relationship
data.
Syntax
get_relationships(session, module_name, module_id, link_field_name, related_module_query,
related_fields, related_module_link_name_to_fields_array, deleted)
Arguments

Name Type Description

session String Session ID returned by a previous login call.

module_name String

The name of the module from which to
retrieve records.

Note: If you change the module’s tab name
in Studio, it does not affect the name that
must be passed into this method.

module_ids String The ID of the specified module bean.

link_field_name String The relationship name of the linked field from
which to return records.

related_module_query String The portion of the WHERE clause from the
SQL statement used to find the related items.

related_fields Array The related fields to be returned.

related_module_link_name_to_fields_arrayArray

For every related bean returned, specify link
field names to field information.

Example: 'link_name_to_fields_array' =>
array(array('name' =>'email_addresses',

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 49

'value' => array('id', 'email_address',
'opt_out', 'primary_address')))

deleted Number To exclude deleted records

Output

Name Type Description

entry_list Array The records that were retrieved.

relationship_list Array The records’ link field data.

Call: set_entry()

Creates or updates a SugarBean.
Syntax

set_entry(session,module_name, name_value_list)
Arguments

Name Type Description

session String Session ID returned by a previous login call.

module_name String

The name of the module from which to retrieve
records.

Note: If you change the module’s tab name in
Studio, it does not affect the name that must be
passed into this method.

name_value_list Array The value of the SugarBean attributes

track_view Boolean Indication if the created record should be tracked
as being viewed.

Output

Name Type Description

id String The ID of the bean that that was written to.

Call: set_entries()

Creates or updates a list of SugarBeans.
Syntax

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 50

set_entries(session,module_name, name_value_lists)
Arguments

Name Type Description

session String Session ID returned by a previous login call.

module_name String

The name of the module from which to retrieve
records.

Note: If you change the module’s tab name in
Studio, it does not affect the name that must be
passed into this method.

name_value_lists Array An array of bean-specific arrays where the keys of
the array are SugarBean attributes.

Output

Name Type Description

ids String The IDs of the beans that that were written to.

Call: login()

Logs the user into the Sugar application.
Syntax

login(user_auth, application)
Arguments

Name Type Description

user_auth Array Sets username and password

application String The name of the application from which the user is
loggin in.

name_value_list Array

Sets the name_value pair. Currently you can use
this function to set values for the ‘language’ and
‘notifyonsave’ parameters.

The language parameter sets the language for the
session. For example, ‘name’=’language’,
‘value’=’en_US’

The ‘notifyonsave sends a notification to the
assigned user when a record is saved. For example,
‘name’=’notifyonsave’,’value’=’true’.

Output

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 51

Name Type Description

id String The session ID

module_name String The Users module

name_value_list Array
The name-value pair of user ID, user name, and
user language, user currency ID, and user currency
name.

Call: logout()

Logs out of the Sugar user session.
Syntax

logout($session)
Example:

To log out a user:
logout array('user_auth' =>
array('session'=>' 4d8d6c12a0c519a6eff6171762ac252c')
Arguments

Name Type Description

session String Session ID returned by a previous call to
login.

This call does not return an output.

Call: get_server_info()
Returns server information such as version, flavor, and gmt_time.
Syntax

get_server_info()
Arguments

Name Type Description

None Null No Arguments

Output

Name Type Description

flavor String Sugar edition such as Ultimate, Enterprise,
Corporate, Professional, or Community Edition.

version String The version number of the Sugar application
that is running on the server.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 52

gmt_time String The current GMT time on the server in Y-m-d
H:i:s format.

Call: get_user_id()

Returns the ID of the user who is logged into the current session.
Syntax

new_get_user_id array('session' => sessionid)
Arguments

Name Type Description

session String Returns the User ID of the current session

Output

Name Type Description

user id String The user ID

Call: get_module_fields()

Retrieves variable definitions (vardefs) for fields of the specified SugarBean.
Syntax

get_module_fields(session, module_name, fields)
Arguments

Name Type Description

session String Returns the session ID

module_name String The module from which to retrieve vardefs.

fields Array Optional. Returns vardefs for the specified
fields.

Output

Name Type Description

module_fields Array The vardefs of the module fields.

link_fields Array The vardefs for the link fields.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 53

Call: seamless_login()

Performs a seamless login during synchronization.
Syntax

seamless_login(session)
Arguments

Name Type Description

session String Returns the session ID

Output

Name Type Description

1 Integer If the session is authenticated

0 Integer If the session is not authenticated

Call: set_note_attachment()

Add or replace a note’s attachment. Optionally, you can set the relationship of this note to related
modules using related_module_id and related_module_name.
Syntax

set_note_attachment(session, note)
Arguments

Name Type Description

session String The session ID returned by a previous call to
login.

note Array The ID of the note containing the attachment.

filename String The file name of the attachment.

file Binary The binary contents of the file.

related_module_id String The id of the module to which this note is
related.

related_module_name String The name of the module to which this note is
related.

Output

Name Type Description

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 54

id String The ID of the note.

Call: get_note_attachment()

Retrieves an attachment from a note.
Syntax

get_note_attachment(session,id)
Arguments

Name Type Description

session String The ID of the session

id String The ID of the note.

Output

Name Type Description

id String The ID of the note containing the
attachment.

filename String The file name of the attachment.

file Binary The binary contents of the file.

related_module_id String The id of the module to which this note is
related.

related_module_name String The name of the module to which this note
is related.

Call: set_document_revision()

Sets a new revision for a document.
Syntax

set_document_revision(session, document_revision)
Arguments

Name Type Description

session String Returns the session ID

document_revision String
The document ID, document name, the
revision number, the file name of the
attachment, the binary contents of the file.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 55

id String The document revision ID.

Output

Name Type Description

id String The ID of the document revision.

Call: get_document_revision()

In case of .htaccess lock-down on the cache directory, allows an authenticated user with the appropriate
permissions to download a document.
Syntax

get_document_revision(session, id)
Arguments

Name Type Description

session String Returns the session ID

id String The ID of the revised document

Output

Name Type Description

document_revision_id String The ID of the document revision
containing the attachment.

document_name String The name of the revised document

revision String The revision value

filename String The file name of the attachment

file Binary The binary contents of the file.

Call: search_by_module()

Returns the ID, module name and fields for specified modules. Supported modules are Accounts, Bugs,
Calls, Cases, Contacts, Leads, Opportunities, Projects, Project Tasks, and Quotes.
Syntax

search_by_module(session, search_string, modules, offset, max_results, assigned_user_id,
select_fields, unified_search_only, favorites)

Arguments

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 56

Name Type Description

session String The session ID returned by a previous call
to login

search_string String The string to search for

modules String The modules to query

offset Integer The specified offset in the query

max_results Integer The maximum number of records to return

assigned_user_id String A filter for the user id, empty if none should
be applied.

select_fields Array An array of fields to return

favorites Boolean Filter for records only marked as favorites.

Output

Name Type Description

return_search_result Array The records returned by the search results.

Call: get_available_modules()

Retrieves the list of modules available to the current user logged into the system.
Syntax

get_available_modules (session, filter)
Arguments

Name Type Description

session String The session ID returned by a previous call
to login

filter String
A filter for the set of available modules
which should be returned. Valid values are:
all, default, and mobile.

Output

Name Type Description

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 57

modules Array An array of available modules

Call: get_user_team_id()

Retrieves the ID of the default team of the user who is logged into the current session.
Syntax

get_user_team_id (session)
Arguments

Name Type Description

session String The session ID returned by a previous call to
login

Output

Name Type Description

team_id String The ID of the current user’s default team.

Call: set_campaign_merge()

Performs a mail merge for the specified campaign.

Syntax

set_campaign_merge (session,targets,campaign_id)

Arguments

Name Type Description

session String The session ID returned by a previous call
to login

targets Array A string array of IDs identifying the targets
used in the merge.

campaign-id String The campaign ID used for the mail merge.

This call does not return an output.

Call: get_entries_count()

Retrieves the specified number of records in a module.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 58

Syntax

get_entries_count(session, module_name,query, deleted)
Arguments

Name Type Description

session String The session ID returned by a previous call
to login

module_name String The name of the module from which to
retrieve the records

query String Allows the webservice user to provide a
WHERE clause.

deleted Integer Specifies whether or not to include deleted
records.

Output

Name Type Description

result_count Integer Total number of records for the specified
query and module

Call: get_report_entries()

(Sugar Professional, Sugar Corporate, Sugar Enterprise and Sugar Ultimate only)

Retrieves a list of report entries based on specified report IDs.

Syntax

get_report_entries(session,ids,select_fields)

Arguments

Name Type Description

session String The session ID returned by a previous call
to login

ids Array The array of report IDs.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 59

select_fields String
Optional. The list of fields to be included in
the results. This parameter enables you to
retrieve only required fields.

Output

Name Type Description

field_list String Vardef information about the returned
fields.

entry_list String Array of retrieved records.

Call: get_quotes_pdf()

Retrieve a quote pdf in base64 encoding.

Syntax

get_quotes_pdf(session, quote_id, pdf_format)

Arguments

Name Type Description

session String The session ID returned by a previous call
to login

quote_id String The id of the quote.

pdf_format String The pdf format, either Standard or Invoice.

Output

Name Type Description

file_contents String The pdf base64 encoded.

Call: get_report_pdf()

Retrieve a report pdf in base64 encoding.

Syntax

get_report_pdf(session, report_id)

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 60

Arguments

Name Type Description

session String The session ID returned by a previous call
to login

report_id String The id of the report.

Output

Name Type Description

file_contents String The pdf base64 encoded.

Call: get_module_fields_md5()

Retrieves the md5 hash of the variable definitions (vardefs) for the specified SugarBean.

Syntax

get_module_fields_md5(session, module_name, fields)

Arguments

Name Type Description

session String Returns the session ID

module_name String The module from which to retrieve vardefs.

Output

Name Type Description

results Array The md5 hash of the variable defition.

Call: get_module_layout()

Retrieves the layout metadata for a given module with a particular type and view.

Syntax

get_module_layout(session, module_names, type, view, acl_check)

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 61

Arguments

Name Type Description

session String Returns the session ID

module_names Array An array of modules to return the layouts for.

type Array An array of the view types to return. Valid
values are ‘default’ or ‘mobile’.

view Array
An array of views to return the layouts for.
Current supported views are: list, detail, edit,
and subpanel.

acl_check Boolean An indicator if we should also return the acl
values with the layout response.

Output

Name Type Description

results Array An array containing the modules, types, and
views with the corresponding layout metdata.

Call: get_module_layout_md5()

Retrieves the md5 hash of the layout metadata for a given module with a particular type and view.

Syntax

get_module_layout_md5(session, module_names, type, view, acl_check)

Arguments

Name Type Description

session String Returns the session ID

module_names Array An array of modules to return the layouts for.

type Array An array of the view types to return. Valid
values are ‘default’ or ‘mobile’.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 62

view Array
An array of views to return the layouts for.
Current supported views are: list, detail, edit,
and subpanel.

acl_check Boolean An indicator if we should also return the acl
values with the layout response.

Output

Name Type Description

results Array
An array containing the md5 hash of the
layout metadata for the modules, types, and
views.

Call: get_last_viewed()

Retrieve a list of recently viewed records by module.

Syntax

get_last_viewed(session, module_names)

Arguments

Name Type Description

session String Returns the session ID

module_names Array An array of modules to return the last viewed
for.

Output

Name Type Description

results Array An array containing the last viewed entries.

Call: get_upcoming_activities()

Retrieve a list of upcoming activities including Calls, Meetings, Tasks, and Opportunities.

Syntax

get_upcoming_activities(session)

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 63

Arguments

Name Type Description

session String Returns the session ID

Output

Name Type Description

results Array An array containing the upcoming activities.

Sample Code

require_once('include/nusoap/nusoap.php');
$soapClient = new nusoapclient('http://YOURSUGARINSTANCE/service/v2/soap.php?wsdl',true);
$userAuth = $soapClient->call('login',

array('user_auth' =>
array('user_name' => 'jim',

'password' => md5('jim'),
'version' => '.01'),
'application_name' => 'SoapTest'));

$sessionId = $userAuth['id'];
$reportIds = array('id'=>'c42c1789-c8a6-5876-93a3-4c1ff15d17f6');
$myReportData = $soapClient->call('get_report_entries',

array('session'=>$sessionId,
'ids'=>$reportIds));

Sample Request for User Login

Sample Request
<soapenv:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/" xmlns:sug="http://www.sugarcrm.com/sugarcrm">
<soapenv:Header/>"
<soapenv:Body>"
<sug:login soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">"
<user_auth xsi:type="sug:user_auth">
<!--You may enter the following 2 items in any order-->
<user_name xsi:type="xsd:string">admin</user_name>
<password xsi:type="xsd:string">0cc175b9c0f1b6a831c399e269772661
</password>"
</user_auth>
<application_name xsi:type="xsd:string"/>
</sug:login>
</soapenv:Body>
</soapenv:Envelope>
Sample Response
<SOAP-ENV:Envelope SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsd="http://www.w3.org/2001/

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 64

http://yoursugarinstance/service/v2/soap.php?wsdl
http://www.w3.org/2001/XMLSchema-instance
http://www.w3.org/2001/XMLSchema
http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/soap/envelope/
http://www.sugarcrm.com/sugarcrm
http://schemas.xmlsoap.org/soap/encoding/
http://schemas.xmlsoap.org/soap/encoding/
http://schemas.xmlsoap.org/soap/envelope/
http://www.w3.org/2001/XMLSchema

XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:tns="http://www.sugarcrm.com/sugarcrm">
<SOAP-ENV:Body>
<ns1:loginResponse xmlns:ns1="http://www.sugarcrm.com/sugarcrm">
<return xsi:type="tns:entry_value">
<id xsi:type="xsd:string">5b7f9c396370d1116affa5f863695c60</id>
<module_name xsi:type="xsd:string">Users</module_name>
<name_value_list xsi:type="SOAP-ENC:Array" SOAP-ENC:arrayType="tns:name_value[5]">
<item xsi:type="tns:name_value">
<name xsi:type="xsd:string">user_id</name>
<value xsi:type="xsd:string">1</value>
</item>
<item xsi:type="tns:name_value">
<name xsi:type="xsd:string">user_name</name>
<value xsi:type="xsd:string">admin</value>
</item>
<item xsi:type="tns:name_value">
<name xsi:type="xsd:string">user_language</name>
<value xsi:type="xsd:string">en_us</value>
</item>
<item xsi:type="tns:name_value">
<name xsi:type="xsd:string">user_currency_id</name>
<value xsi:nil="true" xsi:type="xsd:string"/>
</item>
<item xsi:type="tns:name_value">
<name xsi:type="xsd:string">user_currency_name</name>
<value xsi:type="xsd:string">US Dollars</value>
</item>
</name_value_list>
</return>
</ns1:loginResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

Upgrade-safe extensibility

As of version 5.5.0, Sugar provides versioning for upgrade safe extensibility (Please refer to the
Versioning section for details).

Follow the steps outlined below to create your own upgrade-safe version.

1)
The services directory contains a v2 directory. Create a v2_1 directory in the custom
directory. You can create this directory anywhere in the directory structure of source code
but it is best to put it in the custom directory so that it is upgrade safe.

2)
You need to provide your own registry.php. For example,. customregistry.php, and the
source code looks like this:

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 65

http://www.w3.org/2001/XMLSchema
http://www.w3.org/2001/XMLSchema-instance
http://schemas.xmlsoap.org/soap/encoding/
http://www.sugarcrm.com/sugarcrm
http://www.sugarcrm.com/sugarcrm

<?php

require_once('service/v2/registry.php');

class customregistry extends registry{

public function __construct($serviceClass) {

parent::__construct($serviceClass);

} // fn

protected function registerFunction() {

parent::registerFunction();

$this->serviceClass->registerFunction(

'get_entry',

array('session'=>'xsd:string', 'module_name'=>'xsd:string',
'id'=>'xsd:string'),

array('return'=>'xsd:string'));

} // fn

} // class

3)
Look at the registerFunction. We call parent:: registerFunction() to include all the out of box
functions and the next line is $this->serviceClass->registerFunction(name, input, output).
This allows you to provide your own functions.

4)
You need to provide your own implementation class which extends from the base
implementation class. For example.

<?php

require_once('service/core/SugarWebServiceImpl.php');

class SugarWebServiceImpl_v2_1 extends SugarWebServiceImpl {

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 66

function get_entry($session, $module_name, $id){

return $id;

} // fn

} // class

5) You need to provide your own soap.php or rest.php and initialize all the variables.

The following is an example of your own soap.php

<?php

Chdir(‘../’) (based on how much deep you have defines v2_1 directory)

$webservice_class = 'SugarSoapService2';

$webservice_path = 'service/v2/SugarSoapService2.php';

$registry_class = ' customregistry ';

$registry_path = 'service/v2_1/ customregistry.php';

$webservice_impl_class = 'SugarWebServiceImpl_v2_1';

$location = '/service/v2_1/soap.php';

require_once('../core/webservice.php');

?>

Now your new SOAP URL will be http://localhost/service/v2_1/soap.php.

Following is an example of your rest.php

<?php

Chdir(‘../’) (based on how much deep you have defines v2_1 directory)

$webservice_class = 'SugarRestService2';

$webservice_path = 'service/v2/SugarRestService2.php';

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 67

http://localhost/service/v2_1/soap.php

$registry_class = ' customregistry ';

$registry_path = 'service/v2_1/ customregistry.php';

$webservice_impl_class = 'SugarRestServiceImpl_v2_1';

$location = '/service/v2_1/rest.php';

require_once('../core/webservice.php');

?>

Now your new REST URL will be http://localhost/service/v2_1/rest.php. Your v2_1 directory is

now upgrade safe.

SOAP Errors

We will set the fault object on server in case of any exception. So the client has to check for errors and
call the appropriate method to get the error code and description from that object

Support WS-I 1.0 Basic profile for WSDL

Sugar has provided support to generate a URL that is WS-I compliant. to access theWSDL file in the
format http://<hostname>/service/v2/soap.php?wsdl.

Hence, the new URL will look like this: http://<hostname>/service/v2/
soap.php?wsdl&style=rpc&use=literal.

The style parameter can take either 'rpc' or 'document' and use parameter can be 'literal' or 'encoded'. If
you don't specify style and use parameter then default will be rpc/encoded.

This WSDL (rpc/literal) was successfully tested with Apache CXF 2.2.

SugarSoap Examples

See examples/SoapFullTest_Version2.php for soap examples.

Note: it is also possible to create a NuSOAP client as follows without requiring the WSDL:

$ soapclient = new nusoapclient('http://www.example.com/sugar/soap.php’,false);

This speeds up processing because downloading the WSDL before invoking the method is time intensive.

This type of URL (http://www.example.com/sugar/soap.php) without havin ?wsdl at the end work

fine with NUSOAP client. But with clients like .net, java you need to generate all the client side classes

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 68

http://localhost/service/v2_1/rest.php
http://www.example.com/sugar/soap.php
http://www.example.com/sugar/soap.php

for all the complex type data types by giving appropriate WSDL (rpc or document and literal and
encoded) and make a service call by coding it to those generated classes.

Connectors Framework
This section covers the design specifications for the connector integration capabilities in SugarCRM called
Connectors. The Connector framework allows for various data retrieved through REST and SOAP
protocols to be easily viewed and entered into SugarCRM.

The Connector framework is designed to provide an abstract layer around a connector. So, essentially
our own database would just be considered another connector along with any Soap or, REST connector.
These connectors, in theory, can then be swapped in and out seamlessly. Hence, providing the
framework for it and leveraging a small component is a step in the right direction.The connectors can
then be loaded in by a factory, returned, and called based on their interface methods.

The main components for the connector framework are the factories, source, and formatter classes. The
factories are responsible for returning the appropriate source or formatter instance for a connector. The
sources are responsible for encapsulating the retrieval of the data as a single record or a list or records
of the connectors. The formatters are responsible for rendering the display elements of the connectors.

Factories

The primary factory is the ConnectorFactory class. It uses the static SourceFactory class to return a
connector instance.

The main points to note are that given a source name (e.g. "ext_soap_hoovers"), the underscore
characters are replaced with the file separator character. In this case, "ext_soap_hoovers" becomes
"ext/soap/hoovers". Then the SourceFactory first scans the modules/Connectors/connectors/sources and
then the custom/modules/Connectors/connectors/sources directories to check for the presence of this
file, and returns a source instance if the file is found. The following sequence diagram attempts to
highlight the aforementioned steps.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 69

There is also the FormatterFactory class to return a formatter instance. Retrieving a formatter instance is
similar to retrieving a source instance except that the FormatterFactory scans in order the modules/
Connectors/connectors/formatters first and then the custom/modules/Connectors/connectors/formatters
directories.

Sources

The sources are the centerpiece of the Connectors framework. There are two categories of sources- REST
implementations and SOAP implementations. The default source class is abstract and subclasses need to
override the getList and getItem methods. The class name of the source should be prefixed with either
"ext_soap_" or "ext_rest_". This is because the "_" character serves as a delimiter into the file system
for the class to be found. For example, a SOAP implementation for a source we call "Test" will have the
class name "ext_soap_test" and a REST implementation will have the class name "ext_rest_test".

/**

* getItem

* Returns an array containing a key/value pair(s) of a source record

*

* @param Array $args Array of arguments to search/filter by

* @param String $module String optional value of the module that the connector framework is
attempting to map to

* @return Array of key/value pair(s) of the source record; empty Array if no results are found

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 70

*/

public function getItem($args=array(), $module=null){}

/**

* getList

* Returns a nested array containing a key/value pair(s) of a source record

*

* @param Array $args Array of arguments to search/filter by

* @param String $module String optional value of the module that the connector framework is
attempting to map to

* @return Array of key/value pair(s) of source record; empty Array if no results are found

*/

public function getList($args=array(), $module=null){}

Here is an example of the Array format for the getItem method of the Test source:

Array(

['id'] => 19303193202,

['duns'] => 19303193202,

['recname'] => 'SugarCRM, Inc',

['addrcity'] => 'Cupertino',

)

Here is an example of the Array format for the getList method of the Test source:

Array(

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 71

[19303193202] => Array(

['id'] => 19303193202,

['duns'] => 19303193202,

['recname'] => 'SugarCRM, Inc',

['addrcity'] => 'Cupertino',

),

[39203032990] => Array(

['id'] => 39203032990,

['duns'] => 39203032990,

['recname'] => 'Google',

['addrcity'] => 'Mountain View',

)

)

The key values for the getList/getItem entries should be mapped to a vardefs.php file contained with the
source. This vardefs.php file is required. In this case, we have something like:

<?php

$dictionary['ext_rest_test'] = array(

'comment' => 'vardefs for test connector',

'fields' => array (

'id' => array (

'name' => 'id',

'vname' => 'LBL_ID',

'type' => 'id',

'hidden' => true

'comment' => 'Unique identifier'

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 72

),

'addrcity' => array (

'name' => 'addrcity',

'input' => 'bal.location.city',

'vname' => 'LBL_CITY',

'type' => 'varchar',

'comment' => 'The city address for the company',

'options' => 'addrcity_dom',

'search' => true,

),

)

);

?>

Note the 'input' key for the addrcity entry. The 'input' key allows for some internal argument mapping
conversion that the source uses. The period (.) is used to delimit the input value into an Array. In the
example of the addrcity entry, the value bal.location.city will be translated into the Array argument
['bal']['location']['city'].

The 'search' key for the addrcity entry may be used for the search form in the Connectors’ data merge
wizard screens available for the Ultimate, Enterprise, Corporate, and Professional editions.

Finally, note the 'options' key for the addrcity entry. This 'options' key maps to an entry in the
mapping.php file to assist in the conversion of source values to the database value format in SugarCRM.
For example, assume a source that returns American city values as a numerical value (San Jose = 001,
San Francisco = 032, etc.). Internally, the SugarCRM system may use the city airport codes (San Jose =
sjc, San Francisco = sfo). To allow the connector framework to map the values, the options configuration
is used.

Sources also need to provide a config.php file that may contain optional runtime properties such as the
URL of the SOAP WSDL file, API keys, etc. These runtime properties shall be placed under the
'properties' Array. At a minimum, a 'name' key should be provided for the source.

<?php

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 73

$config = array (

'name' => 'Test', //Name of the source

'properties' =>

array (

'TEST_ENDPOINT' => 'http://test-dev.com/axis2/services/AccessTest',

'TEST_WSDL' => 'http://hapi-dev.test.com/axis2/test.wsdl',

'TEST_API_KEY' => 'abc123',

),

);

?>

An optional mapping.php file may be provided so that default mappings are defined. These mappings
assist the connector framework's component class. In the component class there are the fillBean and
fillBeans methods. These methods use the getItem/getList results from the source instance respectively
and return a SugarBean/SugarBeans that map the resulting values from the source to fields of the
SugarBean(s). While the mapping.php file is optional, it should be created if the 'options' key is used in
vardefs entries in the vardefs.php file.

<?php

$mapping = array (

'beans' => array (

'Leads' => array (

'id' => 'id',

'addrcity' => 'primary_address_city',

),

'Accounts' => array (

'id' => 'id',

'addrcity' => 'primary_address_city',

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 74

http://test-dev.com/axis2/services/AccessTest
http://hapi-dev.test.com/axis2/test.wsdl

),

),

'options' => array (

'addrcity_dom' => array (

'001' => 'sjc', //San Jose

'032' => 'sfo', //San Francisco

),

),

);

?>

In this example, there are two modules that are mapped (Leads and Accounts). The source keys are the
Array keys while the SugarCRM module's fields are the values. Also note the example of the 'options'
Array as discussed in the vardefs.php file section. Here we have defined an addrcity_dom element to
map numerical city values to airport codes.

The source file (test.php) and its supporting files will be placed into self contained directories. In our test
example, the contents would be as follows:

*custom/modules/Connectors/connectors/sources/ext/rest/test/test.php

*custom/modules/Connectors/connectors/sources/ext/rest/test/vardefs.php

*custom/modules/Connectors/connectors/sources/ext/rest/test/config.php

*custom/modules/Connectors/connectors/sources/ext/rest/test/mapping.php

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 75

Formatters

The optional formatter components are used by the connector framework to render a widget that may
display additional details and information. Currently, they are shown in the detail view screens for
modules that are enabled for the connector. Similar to the source class, the formatter class has a
corresponding factory class (FormatterFactory). The formatters also follow the same convention of using
the "ext_rest_" or "ext_soap_" prefix. However, to distinguish conflicting class names, a suffix
"_formatter" is also used. Formatters extend from default_formatter.

The following class diagram shows an example of the LinkedIn formatter extending from the default
formatter.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 76

Here, we have a subclass ext_rest_linkedin_formatter that overrides the getDetailViewFormat and
getIconFilePath methods.

require_once('include/connectors/formatters/default/formatter.php');

class ext_rest_linkedin_formatter extends default_formatter {

public function getDetailViewFormat() {

$mapping = $this->getSourceMapping();

$mapping_name = !empty($mapping['beans'][$this->_module]['name']) ? $mapping['beans'][$this-
>_module]['name'] : '';

if(!empty($mapping_name)) {

$this->_ss->assign('mapping_name', $mapping_name);

return $this->fetchSmarty();

}

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 77

$GLOBALS['log']->error($GLOBALS['app_strings']['ERR_MISSING_MAPPING_ENTRY_FORM_MODULE']);

return '';

}

public function getIconFilePath() {

return 'modules/Connectors/connectors/formatters/ext/rest/linkedin/tpls/linkedin.gif';

}

}

The default_formatter class provides an implementation of the getDetailViewFormat method. This
method is responsible for rendering the hover code that appears next to certain Detail View fields. The
default_formatter class will scan the tpls directory for a Smarty template file named after the module
that is being viewed. For example, the file *formatters/ext/rest/linkedin/tpls/Accounts.tpl will be used for
the Accounts popup view if the file exists. If the module named template file is not found, it will attempt
to use a file named default.tpl.

Formatters are invoked from the Smarty template code, which in turn uses Smarty plugins to call the
Formatter classes. The following sequence diagram illustrates this.

Class definitions

Classes should be named "ExtAPI<apiName>" and should be placed in the include/externalAPI/
<apiName> directory (the directory name should be preceeded with "custom/" if this is externally

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 78

created code) with the filename of "ExtAPI<apiName>.php". There can be other files located in the
directory with your class and they will be ignored by the application, the external api class may use these
for additional libraries, XML/XSL templates or any other necessory file. In order for the new external api
class to be picked up by the system, it is necessary to flush the external api cache of class names by
going to the "Admin" module, selecting the "Repair" link and then selecting "Quick Repair and Rebuild",
after this is complete any new external api classes that match the naming convention.

Classes based on OAuth methods for authentication and access control should extend the
"OAuthPluginBase" class located at "include/externalAPI/Base/OAuthPluginBase.php". Username and
password based api's should extend the "ExternalAPIBase" class located at "include/externalAPI/Base/
ExternalAPIBase.php". Classes should implement the ExternalAPIPlugin API, along with the
WebDocument, WebFeed and/or WebMeeting API's depending on their feature set. Classes may
implement more than one of the WebDocument/WebFeed/WebMeeting API's simultaneously and there
should be only one external api class per 3rd party site so a user does not have to authenticate against
the same site more than once.

Method calls almost always return an array containing at least a "success" element, if this element is
true it can be assumed that the method call was successful. If the method returns a "success" value of
false, an additional element of "errorMessage" must be set with a user-readable error message
explaining the problem.

Classes may optionally use the SugarCRM "Connectors" to allow for site-wide configuration of the class,
things such as API keys and system wide URL's may be entered there. Creating a stub-connector and
linking it to the class is beyond the scope of this document, for a reference implementation you will want
to check the Facebook external API.

Login method definitions

Logins to individual sites are controlled by the External Accounts (EAPM) module within SugarCRM. To
access this module click on your username on the top right and select the "External Accounts" tab. This
will allow you to create new accounts to associate with a 3rd party system. Currently the system allows
for only one active external account per API, when a second one is created all other external accounts for
that API will be disabled. If the requested API is OAuth based the user will only have to select the API
name and select "Save" for the OAuth authentication to happen. If the requested API is password based,
username and password fields will appear for the user to enter the username and password and then this
username and password will be validated upon "Save".

For OAuth based classes the constructor should setup the private variables "oauthReq", "oauthAuth", and
"oauthAccess" based on the related OAuth URL's. If this is done correctly, the OAuthPluginBase should
handle the rest of the authentication automatically. Username and password based classes will have to
define a checkLogin() that returns the correct value upon successful authentication. Optionally code can
be placed in to the checkLogin() and loadEAPM() functions to save and restore additional data from the
$eapmBean->api_data API specific data storage location. One optional parameter may be specified in

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 79

the class for $needsUrl, if true the user will be prompted for a URL for their external account, useful
when the 3rd party system has no single system wide URL.

loadEAPM

Parameters

$eapmBean
A SugarBean of the External Accounts (EAPM)
module

Returns

bool

True or false if the EAPM loading was
successful.

False indicates invalid data in the EAPM
record.

This function is optionally overridden. The loadEAPM function should first call the parent's loadEAPM
function while passing through the $eapmBean, if that returns successfully the class may further inspect
the $eapmBean or load data from the $eapmBean->api_data. Complex data will need to be serialized
and will likely need base64_encoding to sidestep the anti-XSS encoding used by the beans.

checkLogin

Parameters

$eapmBean = null
A SugarBean of the External Accounts (EAPM)
module.

Returns

Reply Array

Returns a standard reply array, indicating
success by having a "success" element set to
true, and failure by having the "success"
element set to false and a user readable error
message in "errorMessage"

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 80

This function is optionally overridden for OAuth based classes. Username and password based classes
must define this function and use it to make a remote API call to verify the username and password that
was input by the user.

This function is called only when the user validates their login by clicking "Save" or "Revalidate" in the
External Accounts (EAPM) module. Many classes use this function to collect per-user information and

store serialized in $eapmBean->api_data, this data will be accessable to the loadEAPM() function call.

quickCheckLogin

Parameters

None Not applicable.

Returns

Reply Array

Returns a standard reply array, indicating
success by having a "success" element set to
true, and failure by having the "success"
element set to false and a user readable error
message in "errorMessage"

This function is optionally overridden all classes. This function is called when a user has selected this
class for interaction the system will fire off an AJAX request to validate the authentication while the user
continues to fill in the form. This should be a very fast and quick authenticaton check to notify the user
of a failed authentication before the user attempts (and fails) saving a record.

logOff

This function is unused.

Document Method Definitions

Any module that implements the webDocument class should also define the $supportedModules with at
least the array elements of "Notes" and "Documents". This indicates to the system that it should show
your API to any user that has a valid EAPM record for your class when they are attempting to upload a
document. Unless document searching is totally not supported by your API, you should set the
$docSearch class property to true.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 81

uploadDoc

Parameters

$bean The Document/Note bean that this upload is
attached to

$fileToUpload The file for uploading, located on the
SugarCRM server

$docName The filename as specified by the user's web
browser

$mimetype The mimetype as specified by the user's web
browser

Modifies

$bean->doc_id
Should be the remote API's ID for the
document. Is only used by other functions of
the API class.

$bean->doc_direct_url
(Optional) A link to directly download the
document

$bean->doc_url
A link to the document's information page on
the external API, this page should contain a
link to download the document.

Returns

Reply Array

Returns a standard reply array, indicating
success by having a "success" element set to
true, and failure by having the "success"
element set to false and a user readable error
message in "errorMessage"

This function does the heavy lifting of the WebDocument implementation. It takes a file as uploaded by
the user to the SugarCRM instance and pushes it to the external site. After it has successfully uploaded
the document to the external site, it must record information about the external file so SugarCRM knows
how to connect back to that document in the future.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 82

downloadDoc

This function is unused.

shareDoc

Parameters

$doc_id
The Document ID that was stored as $bean-
>doc_id in the uploadDoc() function

$emails

The array of email addresses to share the
document with. The document sharing
system should notify the user that this file is
being shared with them

Returns

Reply Array

Returns a standard reply array, indicating
success by having a "success" element set to
true, and failure by having the "success"
element set to false and a user readable error
message in "errorMessage"

Currently this function is not called, but it may be called in a future release.

deleteDoc

This function is unused.

searchDoc

Parameters

$keywords

Keywords used for searching the documents,
if the document store does not support full
text indexing, this should search the
filenames

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
01_Introduction

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 83

http://support.sugarcrm.com/-docs-Developer_Guides-Sugar_Developer_Guide_6.3.0-Sugar_Developer_Guide_6.3.0.html#9002119

$flushDocCache = false
(Optional) This is used to indicate if a locally
stored cache of the file listing should be
cleared before searching

Returns

List of results
Returns an array of results, each element
having the following fields: id, name,
date_modified, url, direct_url

This function allows users to search and display the list of documents stored on the remote server. It has
hooks to connect to the local document cache, but the document cache should only be used if the remote
server is too slow to handle type-ahead searches. If you are implementing the document cache and need
a sample search function you can refer to the ExtAPILotusLive class as a guide.

loadDocCache

Parameters

$forceReload = true
Should the local listing of documents be
cleared away and fetched fresh from the
remote server

Returns

List of results
Returns an array of results, each element
having the following fields: id, name,
date_modified, url, direct_url

This function is optional and is only necessary when an external API cannot perform document searches
fast enough to keep up with a type-ahead search field (roughly 0.5-1 second). This function should pull
down a complete list of files that the user will be active with and store them locally for searching using

the searchDoc() function.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 84

Module Framework
1. Overview

2. User Interface Framework

2.1. Model-View-Controller (MVC) Overview

2.2. SugarCRM MVC Implementation

2.2.1. Model

2.2.1.1. Sugar Object Templates

2.2.1.2. File Structure

2.2.1.3. Implementation

2.2.2. Performance Considerations

2.2.2.1. Cache Files

2.2.3. Controller

2.2.3.1. Upgrade-Safe Implementation

2.2.3.2. File Structure

2.2.3.3. Implementation

Overview
A Sugar Module consists of the following files:

• A Vardefs file that specifies the Sugar metadata for the database table, fields, data types,
and relationships.

•
A SugarBean file that implements the functionality to create, retrieve, update, and delete
objects in Sugar. SugarBean is the base class for all business objects in Sugar. Each module
implements this base class with additional properties and methods specific to that module.

• Metadata files that define the contents and layout of the Sugar screens.

o ListView: lists existing records in the module.

o Detail View: displays record details.

o EditView: allows user to edit the record.

o SubPanels: displays the module's relationship with other Sugar modules.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 85

o Popups: displays list of records to link with another record.

User Interface Framework

Model-View-Controller (MVC) Overview

A model-view-controller, or MVC, is a design philosophy that creates a distinct separation between
business-logic and display logic.

•
Model - This is the data object built by the business/application logic needed to present
in the user interface. For Sugar, it is represented by the SugarBean and all subclasses of
the SugarBean.

•
View - This is the display layer which is responsible for rendering data from the Model to
the end-user.

•
Controller - This is the layer that handles user events such as "Save" and determines
what business logic actions to take to build the model, and which view to load for
rendering the data to end users.

For more details on the MVC software design pattern, see the Wikipedia definition.

SugarCRM MVC Implementation

The following is a sequence diagram that highlights some of the main components involved within the
SugarCRM MVC framework.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 86

http://en.wikipedia.org/wiki/Model-view-controller

Model

The Sugar Model is represented by the SugarBean, and any subclass of the SugarBean. Many of the
common Sugar modules also use the SugarObjects class described below.

Sugar Object Templates

Sugar Objects extend the concept of subclassing a step further and allows you to subclass the vardefs.
This includes inheriting of fields, relationships, indexes, and language files, but unlike subclassing, you
are not limited to a single inheritance. If there were a Sugar Object for fields used across every module
such as id, deleted, or date_modified, you could have your module inherit from both Basic Sugar Object
and the Person Sugar Object.

For example, the Basic type has a field 'name' with length 10 and Company has a field 'name' with
length 20. If you inherit from Basic first then Company your field will be of length 20. Assuming you
have defined the field 'name' in your module with length 60, then the module will always override any
values provided by Sugar Objects.

There are six types of Sugar Object Templates:

• Basic (contains the basic fields required by all Sugar modules)

• Person (used by the Contacts, Prospects and Leads modules)

• Issue (used by the Bugs, Cases modules)

• Company (used by the Accounts module)

• File (based on Documents)

• Sale (based on Opportunities)

We can take this a step further and add assignable to the mix. An assignable module would be one that
can be assigned to users. Although this is not used by every module, many modules do let you assign
records to users. SugarObject interfaces allow us to add “assignable” to modules in which we want to
enable users to assign records.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 87

SugarObject interfaces and SugarObject templates are very similar to one another, but the main
distinction is that templates have a base class you can subclass while interfaces do not. If you look into
the file structure you will notice that templates include many additional files including a full metadata
directory. This is currently used primarily for Module Builder.

File Structure

• include/SugarObjects/interfaces

• include/SugarObjects/templates

Implementation

There are two things you need to do to take advantage of SugarObjects:

1) Your class needs to subclass the SugarObject class you wish to extend.

class MyClass extends Person{

function MyClass(){

parent::Person();

}

}

2) In your vardefs.php file add the following to the end:

VardefManager::createVardef('Contacts','Contact', array('default',
'assignable','team_security', 'person'));

This tells the VardefManager to create a cache of the Contacts vardefs with the addition of all
the default fields, assignable fields, team security fields (Sugar Professional and Enterprise
only), and all fields from the person class.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 88

Performance Considerations

VardefManager caches the generated vardefs into a single file that will be the file loaded at run time.
Only if that file is not found will it load the vardefs.php file that is located in your modules directory. The
same is true for language files. This caching also includes data for custom fields, and any vardef or
language extensions that are dropped into the custom/ext framework.

Cache Files

• cache/modules/<mymodule>/<object_name>vardefs.php

• cache/modules/<mymodule>/languages/en_us.lang.php

Controller

Version 5.0 introduced a cascading controller concept to increase developer granularity over
customizations and to provide additional upgrade-safe capabilities. The main controller, named
SugarController, addresses the basic actions of a module from EditView and DetailView to saving a
record. Each module can override this SugarController by adding a controller.php file into its directory.
This file extends the SugarController, and the naming convention for the class is:

<ModuleName>Controller

Inside the controller you define an action method. The naming convention for the method is:

action_<action_name>

There are more fine grained control mechanisms that a developer can use to override the controller
processing. For example if a developer wanted to create a new Save action there are three places where
they could possibly override.

•
action_save - this is the broadest specification and gives the user full control over
the Save process.

• pre_save - a user could override the population of parameters from the form

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 89

•
post_save - this is where the view is being setup. At this point the developer could
set a redirect url, do some post save processing, or set a different view

Upgrade-Safe Implementation

You can also add a custom Controller that extends the module’s Controller if such a Controller already
exists. For example, if you want to extend the Controller for a module that comes with Sugar 6.1.0, you
should check if that module already has a module-specific controller. If so, you extend from that
controller class. Otherwise, you extend from SugarController class. In both cases, you should place the
custom controller class file in custom/modules/<MyModule>/Controller.php instead of the module
directory. Doing so makes your customization upgrade-safe.

File Structure

• include/MVC/Controller/SugarController.php

• include/MVC/Controller/ControllerFactory.php

• modules/<MyModule>/Controller.php

• custom/modules/<MyModule>/controller.php

Implementation

class UsersController extends SugarController{

function action_SetTimeZone(){

//Save TimeZone code in here

...

}

}

Mapping actions to files

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 90

You can choose not to provide a custom action method as defined above, and instead specify your
mappings of actions to files in $action_file_map. Take a look at include/MVC/Controller/
action_file_map.php as an example:

$action_file_map['subpanelviewer'] = 'include/SubPanel/SubPanelViewer.php';

$action_file_map['save2'] = 'include/generic/Save2.php';

$action_file_map['deleterelationship'] = 'include/generic/DeleteRelationship.php';

$action_file_map['import'] = 'modules/Import/index.php';

Here the developer has the opportunity to map an action to a file. For example Sugar uses a generic
sub-panel file for handling subpanel actions. You can see above that there is an entry mapping the action
‘subpanelviewer' to include/SubPanel/SubPanelViewer.php.

The base SugarController class loads the action mappings in the following path sequence:

• include/MVC/Controller

• modules/<Module-Name>

• custom/modules/<Module-Name>

• custom/include/MVC/Controller

Each one loads and overrides the previous definition if in conflict. You can drop a new action_file_map in
the later path sequence that extends or overrides the mappings defined in the previous one.

Upgrade-Safe Implementation

If you want to add custom action_file_map.php to an existing module that came with the SugarCRM
release, you should place the file at custom/modules/<Module-Name>/action_file_map.php

File Structure

• include/MVC/Controller/action_file_map.php

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 91

• modules/<Module-Name>/action_file_map.php

• custom/modules/<Module-Name>/action_file_map.php

Implementation

$action_file_map['soapRetrieve'] = 'custom/SoapRetrieve/soap.php';

Classic Support (Not Recommended)

Classic support allows you to have files that represent actions within your module. Essentially, you can
drop in a PHP file into your module and have that be handled as an action. This is not recommended, but
is considered acceptable for backward compatibility. The better practice is to take advantage of the
action_<myaction> structure.

File Structure

• modules/<MyModule>/<MyAction>.php

Controller Flow Overview

For example, if a request comes in for DetailView the controller will handle the request as
follows:

• Start in index.php and load the SugarApplication instance

• SugarApplication instantiates SugarControllerFactory

• SugarControllerFactory loads the appropriate Controller

• Check for custom/modules/<MyModule>/Controller.php

o if not found, check for modules/<MyModule>/Controller.php

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 92

o if not found, load SugarController.php

• Call on the appropriate action

o
Look for custom/modules/<MyModule>/<MyAction>.php. If
found and custom/ modules/<MyModule>/views/
view.<MyAction>.php is not found, use this view.

o

If not found check for modules/<MyModule>/<MyAction>.php.
If found and modules/<MyModule>/views/
view.<MyAction>.php is not found, then use the modules/
<MyModule>/<MyAction>.php action

o
If not found, check for the method action_<MyAction> in the
controller.

o If not found, check for an action_file_mapping

o If not found, report error "Action is not defined"

View

Views display information to the browser. Views are not just limited to HTML data, you can have it send
down JSON encoded data as part of the view or any other structure you wish. As with the controllers,
there is a default class called SugarView which implements much of the basic logic for views, such as
handling of headers and footers.

As a developer, to create a custom view you would place a view.<view_name>.php file in a views/
subdirectory within the module. For example, for the DetailView, you would create a file name
view.detail.php and place this within the views/ subdirectory within the module. If a views subdirectory
does not exist, you must create one.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 93

In the file, create a class named: <Module>View<ViewName>. For example, for a list view within the
Contacts module the class would be ContactsViewList. Note the first letter of each word is uppercase and
all other letters are lowercase.

You can extend the class from SugarView, the parent class of all views, or you can extend from an
existing view. For example, extending from the out-of-the-box list view can leverage a lot of the logic
that has already been created for displaying a list view.

Methods

There are two main methods to over-ride within a view:

•

preDisplay() - This performs pre-processing within a view. This method is
relevant only for extending existing views. For example, the include/MVC/View/
views/view.edit.php file uses it, and enables developers who wishes to extend
this view to leverage all of the logic done in preDisplay() and either override the
display() method completely or within your own display() method call
parent::display().

•
display() - This method displays the data to the screen. Place the logic to display
output to the screen here.

Loading the View

The ViewFactory class tries to load the view for view in this sequence, and will use the first one it finds:

• custom/modules/<my_module>/views/view.<my_view>.php

• modules/<my_module>/views/view.<my_view>.php

• custom/include/MVC/View/view.<my_view>.php

• include/MVC/Views/view.<my_view>.php

Implementation

class ContactsViewList extends SugarView{

function ContactsViewList(){

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 94

parent::SugarView();

}

function display(){

echo 'This is my Contacts ListView';

}

}

File Structure

• include/MVC/Views/view.<myview>.php

• custom/include/MVC/Views/view.<myview>.php

• modules/<mymodule>/views/view.<myview>.php

• custom/modules/<mymodule>/views/view.<myview>.php

• include/MVC/Views/SugarView.php

Display Options for Views

The Sugar MVC provides developers with granular control over how the screen looks when a view is
rendered. Each view can have a config file associated with it. So, in the example above, the developer
would place a view.edit.config.php within the views/ subdirectory . When the EditView is rendered, this
config file will be picked up. When loading the view, ViewFactory class will merge the view config files
from the following possible locations with precedence order (high to low):

• customs/modules/<module-name>/views/view.<my_view>.config.php

• modules/<module-name>/views/view.<my_view>.config.php

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 95

• custom/include/MVC/View/views/view.<my_view>.config.php

• include/MVC/View/views/view.<my_view>.config.php

Implementation

The format of these files is as follows:

$view_config = array('actions' =>

array('popup' => array(

'show_header' => false,

'show_subpanels' => false,

'show_search' => false, 'show_footer' => false,

'show_JavaScript' => true,

),

),

'req_params' => array(

'to_pdf' => array(

'param_value' => true,

'config' => array(

'show_all' => false

),

),

),

);

To illustrate this process, let us take a look at how the ‘popup’ action is processed. In this case, the
system will go to the actions entry within the view_config and determine the proper configuration. If the

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 96

request contains the parameter to_pdf, and is set to be true then it will automatically cause the show_all

configuration parameter to be set false, which means none of the options will be displayed.

Metadata Framework

Background

Metadata is defined as information about data. In SugarCRM, metadata refers to the framework of using
files to abstract the presentation and business logic found in the system. The metadata framework is
described in definition files that are processed using PHP. The processing usually includes the use of
Smarty templates for rendering the presentation, and JavaScript libraries to handle some business logic
that affects conditional displays, input validation, and so on.

Application Metadata

All application modules are defined in the modules.php file. It contains several variables that define
which modules are active and usable in the application.

The file is located under the ‘<sugar root>/include’ folder. It contains the $moduleList() array variable
which contains the reference to the array key to look up the string to be used to display the module in
the tabs at the top of the application, the coding standard is for the value to be in the plural of the
module name; for example, Contacts, Accounts, Widgets, and so on.

The $beanList() array stores a list of all active beans (modules) in the application. The $beanList entries
are stored in a ‘name’ => ‘value fashion with the ‘name’ value being in the plural and the ‘value’ being in
the singular of the module name. The ‘value’ of a $beanList() entry is used to lookup values in our next
modules.php variable, the $beanFiles() array.

The $beanFiles variable is also stored in a ‘name’ => ‘value’ fashion. The ‘name’, typically in singular, is a
reference to the class name of the object, which is looked up from the $beanList ‘value’, and the ‘value’
is a reference to the class file. From these three arrays you can include the class, instantiate an instance,
and execute module functionality.

For example:

global $moduleList,$beanList,$beanFiles;

$module_object = ‘Contacts’;

$class_name = $beanList[$module_object];

$class_file_path = $beanFiles[$class_name];

require_once($class_file_path);

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 97

$new_module_object = new $class_name();

$module_string_name = $moduleList[$module_object];

The remaining relevant variables in the modules.php file are the $modInvisList variable which makes
modules invisible in the regular user interface (i.e., no tab appears for these modules), and the
$adminOnlyList which is an extra level of security for modules that are can be accessed only by
administrators through the Admin page.

Module Metadata

The following table lists the metadata definition files found in the modules/[module]/metadata directory,
and a brief description of their purpose within the system.

File Description

additionalDetails.php
Used to render the popup information displayed when a user hovers the
mouse cursor over a row in the List View.

editviewdefs.php Used to render a record's EditView.

detailviewdefs.php Used to render a record's DetailView.

listviewdefs.php Used to render the List View display for a module.

metafiles.php
Used to override the location of the metadata definition file to be used.
The EditView, DetailView, List View, and Popup code check for the
presence of these files.

popupdefs.php Used to render and handle the search form and list view in popups

searchdefs.php Used to render a module's basic and advanced search form displays

sidecreateviewdefs.php
Used to render a module's quick create form shown in the side shortcut
panel

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 98

subpaneldefs.php
Used to render a module's subpanels shown when viewing a record's
DetailView

SearchForm Metadata

The search form layout for each module is defined in the module’s metadata file searchdefs.php. A
sample of the Account's searchdefs.php appears as:

<?php

$searchdefs['Accounts'] = array(

'templateMeta' => array('maxColumns' => '3',

'widths' => array('label' => '10', 'field' => '30')),

'layout' => array(

'basic_search' => array(

'name',

'billing_address_city',

'phone_office',

array('name' => 'address_street',

'label' => 'LBL_BILLING_ADDRESS',

'type' => 'name',

'group'=> 'billing_address_street'

),

array('name'=>'current_user_only',

'label'=>'LBL_CURRENT_USER_FILTER',

'type'=>'bool'

),

),

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 99

'advanced_search' => array(

'name',

array('name' => 'address_street',

'label' =>'LBL_ANY_ADDRESS',

'type' => 'name'

),

array('name' => 'phone',

'label' =>'LBL_ANY_PHONE',

'type' => 'name'

),

'website',

array('name' => 'address_city',

'label' =>'LBL_CITY',

'type' => 'name'

),

array('name' => 'email',

'label' =>'LBL_ANY_EMAIL',

'type' => 'name'

),

'annual_revenue',

array('name' => 'address_state',

'label' =>'LBL_STATE',

'type' => 'name'

),

'employees',

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 100

array('name' => 'address_postalcode',

'label' =>'LBL_POSTAL_CODE',

'type' => 'name'

),

array('name' => 'billing_address_country',

'label' =>'LBL_COUNTRY',

'type' => 'name'

),

'ticker_symbol',

'sic_code',

'rating',

'ownership',

array('name' => 'assigned_user_id',

'type' => 'enum',

'label' => 'LBL_ASSIGNED_TO',

'function' => array('name' =>'get_user_array',

'params' => array(false))

),

'account_type',

'industry',

),

),

);

?>

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 101

The contents of the searchdefs.php file contains the Array variable $searchDefs with one entry. The key is
the name of the module as defined in $moduleList array defined in include/modules.php. The value of the
$searchDefs array is another array that describes the search form layout and fields.

The 'templateMeta' key points to another array that controls the maximum number of columns in each
row of the search form ('maxColumns'), as well as layout spacing attributes as defined by 'widths'. In the
above example, the generated search form files will allocate 10% of the width spacing to the labels and
30% for each field respectively.

The 'layout' key points to another nested array which defines the fields to display in the basic and
advanced search form tabs. Each individual field definition maps to a SugarField widget. See the
SugarField widget section for an explanation about SugarField widgets and how they are rendered for the
search form, DetailView, and EditView.

The searchdefs.php file is invoked from the MVC framework whenever a module's list view is rendered
(see include/MVC/View/views/view.list.php). Within view.list.php checks are made to see if the module
has defined a SearchForm.html file. If this file exists, the MVC will run in classic mode and use the
aforementioned include/SearchForm/SearchForm.php file to process the search form. Otherwise, the new
search form processing is invoked using include/SearchForm/SearchForm2.php and the searchdefs.php
file is scanned for first under the custom/modules/[module]/metadata directory and then in modules/
[module]/metadata.

The processing flow for the search form using the metadata subpaneldefs.php file is similar to that of
EdiView and DetailView.

DetailView and EditView Metadata

Metadata files are PHP files that declare nested Array values that contain information about the view
(buttons, hidden values, field layouts, etc.). A visual diagram that represents how the Array values
declared in the Metadata file are nested is as follows:

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 102

The following diagram highlights the process of how the application determines which Metadata file is to
be used when rendering a request for a view.

The “Classic Mode” on the right hand side of the diagram represents the SugarCRM pre-5.x rendering of
a Detail/Editview. This section will focus on the MVC/Metadata mode.

When the view is first requested, the preDisplay method will attempt to find the correct Metadata file to
use. Typically, the Metadata file will exist in the [root level]/modules/[module]/metadata directory, but
in the event of edits to a layout through the Studio interface, a new Metadata file will be created and
placed in the [root level]/custom/modules/[module]/metadata directory. This is done so that changes to
layouts may be restored to their original state through Studio, and also to allow changes made to layouts
to be upgrade-safe when new patches and upgrades are applied to the application. The metafiles.php file

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 103

that may be loaded allows for the loading of Metadata files with alternate naming conventions or
locations. An example of the metafiles.php contents can be found for the Accounts module (though it is
not used by default in the application).

$metafiles['Accounts'] = array(

'detailviewdefs' => 'modules/Accounts/metadata/detailviewdefs.php',

'editviewdefs' => 'modules/Accounts/metadata/editviewdefs.php',

'ListViewdefs' => 'modules/Accounts/metadata/ListViewdefs.php',

'searchdefs' => 'modules/Accounts/metadata/searchdefs.php',

'popupdefs' => 'modules/Accounts/metadata/popupdefs.php',

'searchfields' => 'modules/Accounts/metadata/SearchFields.php',

);

After the Metadata file is loaded, the preDisplay method also creates an EditView object and checks if a
Smarty template file needs to be built for the given Metadata file. The EditView object does the bulk of
the processing for a given Metadata file (creating the template, setting values, setting field level ACL
controls if applicable, etc.). Please see the EditView process diagram for more detailed information about
these steps.

After the preDisplay method is called in the view code, the display method is called, resulting in a call to
the EditView object’s process method, as well as the EditView object’s display method.

The EditView class is responsible for the bulk of the Metadata file processing and creating the resulting
display. The EditView class also checks to see if the resulting Smarty template is already created. It also
applies the field level ACL controls for the Sugar Ultimate, Enterprise, Corporate, and Professional
editions.

The classes responsible for displaying the Detail View and SearchForm also extend and use the EditView
class. The ViewEdit, ViewDetail and ViewSidequickcreate classes use the EditView class to process and
display its contents. Even the file that renders the quick create form display (SubpanelQuickCreate.php)
uses the EditView class. DetailView (in DetailView2.php) and SearchForm (in SearchForm2.php) extend
the EditView class while SubpanelQuickCreate.php uses an instance of the EditView class. The following
diagram highlights these relationships.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 104

The following diagram highlights the EditView class’s main responsibilities and their relationships with
other classes in the system. We will use the example of a DetailView request although the sequence will
be similar for other views that use the EditView class.

One thing to note is the EditView class’s interaction
with the TemplateHandler class. The TemplateHandler class is responsible for generating a Smarty
template in the cache/modules/<module> directory. For example, for the Accounts module, the
TemplateHandler will create the Smarty file cache/modules/Accounts/DetailView.tpl based on the
Metadata file definition and other supplementary information from the EditView class. The

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 105

TemplateHandler class actually uses Smarty itself to generate the resulting template that is placed in the
aforementioned cache directory.

Some of the modules that are available in the SugarCRM application also extend the ViewDetail class.
One example of this is the DetailView for the Projects module. As mentioned in the MVC section, it is
possible to extend the view classes by placing a file in the modules/<module>/views directory. In this
case, a view.detail.php file exists in the modules/Projects/views folder. This may serve as a useful
example in studying how to extend a view and apply additional field/layout settings not provided by the
EditView class.

The following diagram shows the files involved with the DetailView example in more detail.

A high level processing summary of the components for DetailViews follows:

The MVC framework receives a request to process the DetaiView.php (A) action for a module. For
example, a record is selected from the list view shown on the browser with URL:

index.php?action=DetailView&module=Opportunities&record=46af9843-ccdf-f489-8833

At this point the new MVC framework checks to see if there is a DetailView.php (A2) file in the modules/
Opportunity directory that will override the default DetailView.php implementation. The presence of a
DetailView.php file will trigger the "classic" MVC view. If there is no DetailView.php (A2) file in the
directory, the MVC will also check if you have defined a custom view to handle the DetailView rendering
in MVC (that is,. checks if there is a file modules/Opportunity/views/view.detail.php). See the
documentation for the MVC architecture for more information. Finally, if neither the DetailView.php (A2)
nor the view.detail.php exists, then the MVC will invoke include/DetailView/DetailView.php (A).

The MVC framework (see views.detail.php in include/MVC/View/views folder) creates an instance of the
generic DetailView (A)

// Call DetailView2 constructor

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 106

$dv = new DetailView2();

// Assign by reference the Sugar_Smarty object created from MVC

// We have to explicitly assign by reference to back support PHP 4.x

$dv->ss =& $this->ss;

// Call the setup function

$dv->setup($this->module, $this->bean, $metadataFile, 'include/DetailView/DetailView.tpl');

// Process this view

$dv->process();

// Return contents to the buffer

echo $dv->display();

When the setup method is invoked, a TemplateHandler instance (D) is created. A check is performed to
determine which detailviewdefs.php metadata file to used in creating the resulting DetailView. The first
check is performed to see if a metadata file was passed in as a parameter. The second check is
performed against the custom/studio/modules/[Module] directory to see if a metadata file exists. For the
final option, the DetailView constructor will use the module's default detailviewdefs.php metadata file
located under the modules/[Module]/metadata directory. If there is no detailviewdefs.php file in the
modules/[Module]/metadata directory, but a DetailView.html exists, then a "best guess" version is
created using the metadata parser file in include/SugarFields/Parsers/DetailViewMetaParser.php (not
shown in diagram).

The TemplateHandler also handles creating the quick search (Ajax code to do look ahead typing) as well
as generating the JavaScript validation rules for the module. Both the quick search and JavaScript code
should remain static based on the definitions of the current definition of the metadata file. When fields
are added or removed from the file through the Studio application, this template and the resulting
updated quick search and JavaScript code will be rebuilt.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 107

It should be noted that the generic DetailView (A) defaults to using the generic DetailView.tpl smarty
template file (F). This may also be overridden through the constructor parameters. The generic
DetailView (A) constructor also retrieves the record according to the record id and populates the $focus
bean variable.

The process() method is invoked on the generic DetailView.php instance:

function process() {

//Format fields first

if($this->formatFields) {

$this->focus->format_all_fields();

}

parent::process();

}

This in turn, calls the EditView->process() method since DetailView extends from EditView. The
EditView->process() method will eventually call the EditView->render() method to calculate the width
spacing for the DetailView labels and values. The number of columns and the percentage of width to
allocate to each column may be defined in the metadata file. The actual values are rounded as a total
percentage of 100%. For example, given the templateMeta section’s maxColumns and widths values:

'templateMeta' => array('maxColumns' => '2',

'widths' => array(

array('label' => '10', 'field' => '30'),

array('label' => '10', 'field' => '30')

),

),

We can see that the labels and fields are mapped as a 1-to-3 ratio. The sum of the widths only equals a
total of 80 (10 + 30 x 2) so the actual resulting values written to the Smarty template will be at a
percentage ratio of 12.5-to-37.5. The resulting fields defined in the metadata file will be rendered as a
table with the column widths as defined:

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 108

The actual metadata layout will allow for variable column lengths throughout the displayed table. For
example, the metadata portion defined as:

'panels' =>array (

'default' => array (

array (

'name',

array (

'name' => 'amount',

'label' => '{$MOD.LBL_AMOUNT} ({$CURRENCY})',

),

),

array (

'account_name',

),

array (

'',

'opportunity_type',

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 109

)

)

)

This specifies a default panel under the panels section with three rows. The first row has
two fields (name and amount). The amount field has some special formatting using the label
override option. The second row contains the account_name field and the third row contains
the opportunity_type column.

Secondly, the process() method populates the $fieldDefs array variable with the vardefs.php file (G)
definition and the $focus bean's value. This is done by calling the toArray() method on the $focus bean
instance and combining these value with the field definition specificed in the vardefs.php file (G).

The display() method is then invoked on the generic DetailView instance for the final step.
When the display() method is invoked, variables to the DetailView.tpl Smarty template are assigned and
the module's HTML code is sent to the output buffer.

Before HTML code is sent back, the TemplateHandler (D) first performs a check to see if an existing
DetailView template already exists in the cache respository (H). In this case, it will look for file cache/
modules/Opportunity/DetailView.tpl. The operation of creating the Smarty template is expensive so this
operation ensures that the work will not have to be redone. As a side note, edits made to the DetailView
or EditView through the Studio application will clear the cache file and force the template to be rewritten
so that the new changes are reflected.

If the cache file does not exist, the TemplateHandler (D) will create the template file and store it in the
cache directory. When the fetch() method is invoked on the Sugar_Smarty class (E) to create the
template, the DetailView.tpl file is parsed.

SugarField Widgets

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 110

SugarFields are the Objects that render the fields specified in the metadata (for example, your
*viewdefs.php files). They can be found in include/SugarFields/Fields. In the directory include/
SugarFields/Fields/Base you will see the files for the base templates for rendering a field for DetailView,
EditView, ListView, and Search Forms. As well as the base class called SugarFieldBase.

File Structure

• include/SugarFields/Fields/<fieldname>

• include/SugarFields/Fields/<fieldname>/DetailView.tpl

• modules/MyModule/vardefs.php

• modules/MyModule/metadata/<view>defs.php

Implementation

This section describes the SugarFields widgets that are found in the include/SugarFields/Fields directory.
Inside this folder you will find a set of directories that encapsulate the rendering of a field type (for
example, Boolean, Text, Enum, and so on.). That is, there are user interface paradigms associated with
a particular field type. For example, a Boolean field type as defined in a module's vardef.php file can be
displayed with a checkbox indicating the boolean nature of the field value (on/off, yes/no, 0/1, etc.).
Naturally there are some displays in which the rendered user interface components are very specific to
the module's logic. In this example, it is likely that custom code was used in the metadata file definition.
There are also SugarFields directories for grouped display values (e.g. Address, Datetime, Parent, and
Relate).

Any custom code called by the metadata will be passed as unformatted data for numeric entries, and
that custom code in the metadata will need individual handle formatting.

SugarFields widgets are rendered from the metadata framework whenever the MVC EditView, DetailView,
or ListView actions are invoked for a particular module. Each of the SugarFields will be discussed briefly.

Most SugarFields will contain a set of Smarty files for abstract rendering the field contents and
supporting HTML. Some SugarFields will also contain a subclass of SugarFieldBase to override particular
methods so as to control additional processing and routing of the corresponding Smarty file to use. The
subclass naming convention is defined as:

SugarField[Sugar Field Type]

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 111

where the first letter of the Sugar Field Type should be in uppercase. The contents should also be placed
in a corresponding .php file. For example, the contents of the enum type SugarField (rendered as
<select> in HTML) is defined in include/SugarFields/Fields/Enum/SugarFieldEnum. In that file, you can
see how the enum type will use one of six Smarty template file depending on the view (edit, detail or
search) and whether or not the enum vardef definition has a 'function' attribute defined to invoke a PHP
function to render the contents of the field.

SugarFields Widgets Reference

Address

The Address field is responsible for rendering the various fields that together represent an address value.
By default SugarCRM renders address values in the United States format:

Street

City, State Zip

The Smarty template layout defined in DetailView.tpl reflects this. Should you wish to customize the
layout, depending on the $current_language global variable, you may need to add new files
[$current_language].DetailView.tpl or [$current_language].EditView.tpl to the Address directory that
reflect the language locale's address formatting.

Within the metadata definition, the Address field can be rendered with the snippet:

array (

'name' => 'billing_address_street',

'hideLabel' => true,

'type' => 'address',

'displayParams'=>array('key'=>'billing', 'rows'=>2, 'cols'=>30, 'maxlength'=>150)

),

name
The vardefs.php entry to key field off of. Though not 100% ideal, we
use the street value

hideLabel
Boolean attribute to hide the label that is rendered by metadata
framework. We hide the billing_address_street label because the

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 112

Address field already comes with labels for the other fields (city,
state). Also, if this is not set to false, the layout will look awkward.

type
This is the field type override. billing_address_street is defined as a
varchar in the vardefs.php file, but since we are interested in
rendering an address field, we are overriding this here

displayParams

key - This is the prefix for the address fields. The address field
assumes there are [key]_address_street, [key]_address_state,
[key]_address_city, [key]_address_postalcode fields so this helps to
distinguish in modules where there are two or more addresses (e.g.
'billing' and 'shipping').

rows, cols, maxlength - This overrides the default HTML <textarea>
attributes for the street field component.

Note also the presence of file include/SugarFields/Fields/Address/SugarFieldAddress.js. This file is
responsible for handling the logic of copying address values (from billing to shipping, primary to
alternative, etc.). The JavaScript code makes assumptions using the key value of the grouped fields.

To customize various address formats for different locales, you may provide a locale specific
implementation in the folder include/SugarFields/Fields/Address. There is a default English
implementation provided. Locale implementations are system wide specific (you cannot render an
address format for one user with an English locale and another format for another with a Japanese
locale). SugarCRM locale settings are system-wide and the SugarField implementation reflects this. To
modify based on a user's locale preferences is possible, but will require some customization.

Base

The Base field is the default parent field. It simply renders the value as is for DetailViews, and an HTML
text field <input type="text"> for EditViews. All SugarFields that have a corresponding PHP file extend
from SugarFieldBase.php or from one of the other SugarFields.

Bool

The Bool field is responsible for rendering a checkbox to reflect the state of the value. All boolean fields
are stored as integer values. The Bool field will render a disabled checkbox for DetailViews. If the field
value is "1" then the checkbox field will be checked. There is no special parameter to pass into this field
from the metadata definition. As with any of the fields you have the option to override the label key
string.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 113

For example, in the metadata definition, the Boolean field do_not_call can be specified as:

'do_not_call'

or

array (

array('name'=>'do_not_call',

'label'=>'LBL_DO_NOT_CALL' // Overrides label as defined in vardefs.php

)

),

Currency

The Currency field is responsible for rendering a field that is formatted according to the user’s
preferences for currencies. This field’s handles will format the field differently if the field name contains
the text ‘_usd’, this is used internally to map to the amount_usdollar fields which will always display the
currency in the user’s preferred currency (or the system currency if the user does not have one
selected). If the field name does not contain ‘_usd’, the formatting code will attempt to find a field in the
same module called ‘currency_id’ and use that to figure out what currency symbol to display next to the
formatted number. In order for this to work on ListViews and sub-panels, you will need to add the
‘currency_id’ column as a ‘query_only’ field, for further reference please see the Opportunities ListView
definitions.

Within the metadata definition, the Currency field can be rendered with the snippet:

'amount', // Assumes that amount is defined

// as a currency field in vardefs.php file

or

array('name'=>'amount',

'displayParams'=>array('required'=>true)

),

Datetime

The Datetime field is responsible for rendering an input text field along with an image to invoke the
popup calendar picker. The Datetime field differs from the Datetimecombo field in that there is no option
to select the time values of a datetime database field.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 114

Within the metadata definition, the Datetime field can be rendered with the snippet:

'date_quote_expected_closed', // Assumes that date_quote_exected_closed is defined

// as a datetime field in vardefs.php file

or

array('name'=>'date_quote_expected_closed',

'displayParams'=>array('required'=>true, 'showFormats'=>true)

),

name
Standard name definition when metadata definition is defined as an
array

displayParams

required (optional) - Marks the field as required and applies clients
side validation to ensure value is present when save operation is
invoked from EditView (Overrides the value set in vardefs.php).

showFormats (optional) - Displays the user's date display preference
as retrieved from the global $timedate variable's
get_user_date_format() method.

Datetimecombo

The Datetimecombo field is similar to the Datetime field with additional support to render dropdown lists
for the hours and minutes values, as well as a checkbox to enable/disable the entire field. The date
portion (e.g. 12/25/2007) and time portion (e.g. 23:45) of the database fields are consolidated. Hence,
the developer must take care to handle input from three HTML field values within the module class code.
For example, in the vardefs.php definition for the date_start field in the Calls module:

'date_start' => array (

'name' => 'date_start',

'vname' => 'LBL_DATE',

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 115

'type' => 'datetime',

'required' => true,

'comment' => 'Date in which call is schedule to (or did) start'

),

There is one database field, but when the Datetimecombo widget is rendered, it will produce three HTML
fields for display- a text box for the date portion, and two dropdown lists for the hours and minutes
values. The Datetimecombo widget will render the hours and menu dropdown portion in accordance to
the user's $timedate preferences. An optional AM/PM meridiem drop down is also displayed should the
user have selected a 12 hour base format (e.g. 11:00).

Within the metadata definition, the Datetimecombo field can be rendered with the snippet:

array('name'=>'date_start',

'type'=>'datetimecombo',

'displayParams'=>array('required' => true,

'updateCallback'=>'SugarWidgetScheduler.update_time();',

'showFormats' => true,

'showNoneCheckbox' => true),

'label'=>'LBL_DATE_TIME'),

name
Standard name definition when metadata definition is defined as an
array

type
metadata type override. By default, the field defaults to Datetime so
we need to override it here in the definition.

displayParams
required (optional) - Marks the field as required and applies clients
side validation to ensure value is present when save operation is
invoked from EditView (Overrides the value set in vardefs.php).

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 116

updateCallback (optional) - Defines custom JavaScript function to
invoke when the values in the field are changed (date, hours or
minutes).

showFormats (optional) - Displays the user's date display preference
as retrieved from the global $timedate variable's
get_user_date_format() method.

showNoneCheckbox (optional) - Displays a checkbox that when
checked will disable all three field values

label
(optional)

Standard metadata label override just to highlight this exhaustive
example

Download

The File field renders a link that references the download.php file for the given displayParam['id'] value
when in DetailView mode.

Within the metadata definition, the Download field can be rendered with the snippet:

array (

'name' => 'filename',

'displayParams' => array('link'=>'filename', 'id'=>'document_revision_id')

),

name
Standard name definition when metadata definition is defined as an
array

displayParams

required (optional) - Marks the field as required and applies clients
side validation to ensure value is present when save operation is
invoked from EditView (Overrides the value set in vardefs.php).

id (required for DetailView) - The field for which the id of the file will
be opened via the download link.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 117

link (required for DetailView) - The field for which the hyperlink
value is displayed.

Enum

The Enum field renders an HTML <select> form element that allows for a single value to be chosen. The
size attribute of the <select> element is not defined so the element will render as a dropdown field in
the EditView.

This field accepts the optional function override behavior that is defined at the vardefs.php file level. For
example, in the Bugs module we have for the found_in_release field:

'found_in_release'=>

array(

'name'=>'found_in_release',

'type' => 'enum',

'function'=>'getReleaseDropDown',

'vname' => 'LBL_FOUND_IN_RELEASE',

'reportable'=>false,

'merge_filter' => 'enabled',

'comment' => 'The software or service release that manifested the bug',

'duplicate_merge' => 'disabled',

'audited' =>true,

),

The function override is not handled by the SugarFields library, but by the rendering code in include/
EditView/EditView2.php.

Within the metadata definition, the Download field can be rendered with the snippet:

array (

'name' => 'my_enum_field',

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 118

'type' => 'enum',

'displayParams' => array('javascript'=>'onchange="alert(\'hello world!\')";')

),

name
Standard name definition when metadata definition is defined as an
array

displayParams

size (optional) – Controls the size of the field (affects SearchForm
control on the browser only). Defaults to value of 6 for SearchForm.

required (optional) - Marks the field as required and applies clients
side validation to ensure value is present when save operation is
invoked from EditView (Overrides the value set in vardefs.php).

javascript (optional) - Custom JavaScript to embed within the
<select> tag element (see above example for onchange event
implementation).

File

The File field renders a file upload field in EditView, and a hyperlink to invoke download.php in
DetailView. Note that you will need to override the HTML form's enctype attribute to be "multipart/form-
data" when using this field and handle the upload of the file contents in your code. This form enctype
attribute should be set in the editviewdefs.php file. For example, for the Document's module we have the
form override:

$viewdefs['Documents']['EditView'] = array(

'templateMeta' => array('form' =>

array('enctype'=>'multipart/form-data', // <--- override the enctype

),

)

Within the metadata file, the File field can be rendered with the snippet:

array (

'name' => 'filename',

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 119

'displayParams' => array('link'=>'filename', 'id'=>'document_revision_id'),

),

name
Standard name definition when metadata definition is defined as an
array

displayParams

required (optional) - Marks the field as required and applies clients
side validation to ensure value is present when save operation is
invoked from EditView (Overrides the value set in vardefs.php).

id (required for detailviewdefs.php) - The record id that
download.php will use to retrieve file contents

link (required for detailviewdefs.php) - The text to display between
the <a> </> tags.

size (optional) - Affects EditView only. Override to set the display
length attribute of the input field.

maxlength(optional) - Affects EditView only. Override to set the
display maxlength attribute of the input field (defaults to 255).

Float

The Float field is responsible for rendering a field that is formatted as a floating point number. The
precision specified will be followed, or the user’s default precision will take over.

Within the metadata definition, the Float field can be rendered with the snippet:

'weight', // Assumes that weight is defined

// as a float field in vardefs.php file

or

array('name'=>’weight',

'displayParams'=>array('precision'=>1)

),

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 120

name
Standard name definition when metadata definition is defined as an
array

displayParams

required (optional) - Marks the field as required and applies clients
side validation to ensure value is present when save operation is
invoked from EditView (Overrides the value set in vardefs.php).

precision (optional) – Sets the displayed precision of the field, this
specifies the number of digits after the decimal place that the field
will attempt to format and display. Some databases may further
limit the precision beyond what can be specified here.

Html

The Html field is a simple field that renders read-only content after the content is run through the
from_html method of include/utils/db_utils.php to encode entity references to their HTML characters (i.e.
">" => ">"). The rendering of the Html field type should be handled by the custom field logic within
SugarCRM.

name
Standard name definition when metadata definition is defined as an
array.

displayParams none

Iframe

In the DetailView, the Iframe field creates an HTML <iframe> element where the src attribute points to
the given URL value supplied in the EditView. Alternatively, the URL may be generated from the values of
other fields, and the base URL in the vardefs. If this is the case, the field is not editable in the EditView.

name
Standard name definition when metadata definition is defined as an
array.

displayParams None

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 121

Image

Similar to the Html field, the Image field simply renders a tag where the src attribute points to
the value of the field.

Within the metadata file, the Image field can be rendered with the snippet:

array (

'name' => 'my_image_value', // <-- The value of this is assumed to be some

// URL to an image file

'type' => 'image',

'displayParams'=>array('width'=>100, 'length'=>100,

'link'=>'http://www.cnn.com', 'border'=>0),

),

name
Standard name definition when metadata definition is
defined as an array

displayParams

link (optional) - Hyperlink for the image when clicked on.

width (optional) - Width of image for display.

height (optional) - Height of image for display.

border (optional) - Border thickness of image for display

Int

The Int field is responsible for rendering a field that is formatted as a decimal point number. This will
always be displayed as a whole number, and any digits after the decimal point will be truncated.

Within the metadata definition, the Int field can be rendered with the snippet:

'quantity', // Assumes that quantity is defined

// as a int field in vardefs.php file

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 122

http://www.cnn.com

or

array('name'=>’quantity',

'displayParams'=>array('required'=>1)

),

Link

The link field simply generates an <a> HTML tag with a hyperlink to the value of the field for
DetailViews. For EditViews, it provides the convenience of pre-filling the "http://" value. Alternatively,
the URL may be generated from the values of other fields, and the base URL in the vardefs. If this is the
case, the field is not editable in EditView.

Within the metadata file, the Link field can be rendered with the snippet:

array (

'name' => 'my_image_value', // <-- The value of this is assumed to

// be some URL to an image file

'type' => 'link',

'displayParams'=>array('title'=>'LBL_MY_TITLE'),

),

name
Standard name definition when metadata definition is defined as an
array

displayParams

required (optional) - Marks the field as required and applies clients
side validation to ensure value is present when save operation is
invoked from EditView (overrides the value set in vardefs.php).

title (optional for detailviewdefs.php only) - The <a> tag's title
attribute for browsers to display the link in their status area

size (optional) - Affects EditView only. Override to set the display
length attribute of the input field.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 123

maxlength(optional) - Affects EditView only. Override to set the
display maxlength attribute of the input field (defaults to 255).

Multienum

The Multienum fields renders a bullet list of values for DetailViews, and renders a <select> form element
for EditViews that allows multiple values to be chosen. Typically, the custom field handling in Sugar will
map multienum types created through Studio, so you do not need to declare metadata code to specify
the type override. Nevertheless, within the metadata file, the Multienum field can be rendered with the
snippet:

array (

'name' => 'my_multienum_field',

'type' => 'multienum',

'displayParams' => array('javascript'=>'onchange="alert(\'hello world!\')";')

),

name
Standard name definition when metadata definition is defined as an
array

displayParams

size (optional) – Controls the size of the field (affects SearchForm
control on browser only). Defaults to value of 6 for SearchForm.

required (optional) - Marks the field as required and applies clients
side validation to ensure value is present when save operation is
invoked from EditView (Overrides the value set in vardefs.php).

javascript (optional) - Custom JavaScript to embed within the
<select> tag element (see above example for onchange event
implementation).

Parent

The parent field combines a blend of a dropdown for the parent module type, and a text field with code
to allow Quicksearch for quicksearch-enabled modules (see include/SugarFields/Fields/Parent/
EditView.tpl file contents and JavaScript code for more information on enabling Quicksearch). There are
also buttons to invoke popups and a button to clear the value. Because the parent field assumes proper

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 124

relationships within the SugarCRM modules, it is not a field you can add through Studio or attempt to
type override in the metadata files.

Password

The password field simply renders an input text field with the type attribute set to "password" to hide
user input values. It is available to EditViews only.

name
Standard name definition when metadata definition is defined as an
array

displayParams

required (optional) - Marks the field as required and applies clients
side validation to ensure value is present when Save operation is
invoked from EditView (Overrides the value set in vardefs.php).

size (optional) - Override to set the display length attribute of the
input field (defaults to 30).

Phone

The phone field simply invokes the callto:// URL references that could trigger Skype or other VOIP
applications installed on the user's system. It is rendered for DetailViews only.

Radioenum

The Radioenum field renders a group of radio buttons. Radioenum fields are similar to the enum field,
but only one value can be selected from the group.

Readonly

The readonly field simply directs EditView calls to use the SugarField's DetailView display. There are no
Smarty .tpl files associated with this field.

Relate

The Relate field combines a blend of a text field with code to allow Quick Search. The quicksearch code is
generated for EditViews (see include/TemplateHandler/TemplateHandler.php). There are also buttons to
invoke popups and a button to clear the value. For DetailViews, the Relate field creates a hyperlink that
will bring up a DetailView request for the field's value.

Within the metadata file, the Relate field can be rendered with the snippet:

array (

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 125

array('name'=>'account_name',

'type'=>'relate',

'displayParams'=>array('allowNewValue'=>true)

),

),

This will create a relate field that allows the user to input a value not found in the quicksearch list.

name
Standard name definition when metadata definition is defined as an
array

displayParams

required (optional) - Marks the field as required and applies clients
side validation to ensure value is present when Save operation is
invoked from EditView (Overrides the value set in vardefs.php).

readOnly (optional for editviewdefs.php file only) - Makes the text
field input area readonly so that you have to just use the popup
selection.

popupData - This field is generated for you by default. See include/
SugarFields/Fields/SugarFieldRelate.php for more information. You
should not need to override this setting.

allowNewValue (optional for editviewdefs.php file only) - This setting
allows the user to specify a value that is not found from the
quicksearch list of results.

hideButtons (optional for editviewdefs.php SearchForm.php and
popupdefs.php) – Hides the Select and Clear buttons normally
displayed next to the editable Relate field.

Text

The Text field renders a <textarea> HTML form element for EditViews and displays the field value with
newline characters converted to HTML elements in DetailViews.

Name
Standard name definition when metadata definition is defined as an
array

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 126

displayParams

required (optional) - Marks the field as required and applies clients
side validation to ensure value is present when Save operation is
invoked from EditView (Overrides the value set in vardefs.php).

maxlength (optional for editviewdefs.php file only) - Sets the
maximum length of character input allowed in the <textarea> field.

rows (optional for editviewdefs.php file only) - Sets the number of
rows in the <textarea>field.

cols (optional for editviewdefs.php file only) - Sets the number of
cols in the <textarea> field.

Username

The Username field is a helper field that assumes a salutation, first_name and last_name field exists for
the vardefs of the module. It displays the three fields in the format:

[salutation] [first_name] [last_name]

Metadata Framework Summary

In summary, the new metadata framework simplifies the management of the detail and EditViews by
reducing the number of individual .tpl or .html files currently used in 4.X versions and prior. The problem
was that a change to a module's view required the editing of the module's .html or .tpl file and with that,
the extra checks against malformed html or smarty tags as well as proper field type displays (select
elements for enum fields, checkboxes for booleans, etc.). By moving to a metadata driven framework,
the fields that are rendered are tied directly to the module's vardefs.php file definition (barring any
customization).

Formatting Changes

All numeric fields will be stored in the bean in an unformatted way. Any time a field is displayed to the
user, formatting will have to be done. Each of the Sugar fields has a formatField function that you can
call for this specific purpose.

Vardefs

Vardefs (Variable Definitions) are used to provide the Sugar application with information about
SugarBeans. They specify information on the individual fields, relationships between beans, and the
indexes for a given bean. Each module that contains a SugarBean file has a vardefs.php file located in it,
which specifies the fields for that SugarBean. For example, the Vardefs for the Contact bean is located in
sugarcrm/modules/Contacts/vardefs.php.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 127

Vardef files create an array called "$dictionary", which contains several entries including tables, fields,
indices, and relationships.

Dictionary Array

•
'table' = The name of the database table (usually, the name of the module) for this bean
that contains the fields.

• 'audited' = Set to True if this module has auditing turned on

• 'fields' = A list of fields and their attributes (see below)

• 'indices' = A list of indexes that should be created in the database (see below)

• 'relationships' = A list of the relationships for this bean (see below)

•
'optimistic_locking' = True if this module should obey optimistic locking. Optimistic
locking uses the modified date to ensure that the bean you are working on has not been
modified by anybody else when you try and save. This prevents loss of data.

•
‘unified_search’ = True if this module is available to be searched thru the Global Search,
defaults to false. Has no effect if none of the fields in the Fields array have the
‘unified_search’ attribute set to true.

•
‘unified_search_default_enabled’ – True if this module should be searched by default for
new users thru the Global Search, defaults to true. Has no effect if ‘unified_search’ is not
set to true.

Fields Array

The fields array contains one array for each field in the SugarBean. At the top level of this array the key
is the name of the field, and the value is an array of attributes about that field.

The list of possible attributes are as follows:

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 128

• 'name' = The name of the field

• 'vname' = The language pack id for the label of this field

• 'type' = The type of the attribute

o 'relate' = Related Bean

o 'datetime' = A date and time

o 'bool' = A boolean value

o 'enum' = An enumeration (drop down list from the language pack)

o 'char' = A character array

o 'assigned_user_name' = A linked user name

• 'varchar' = A variable sized string

• 'table' = The table this field comes from

• 'isnull' = Is this field allowed to be set to null?

• 'len' = The length of the field (number of characters if a string)

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 129

• 'options' = The name of the enumeration in the language pack for this field

• 'dbtype' = The database type of the field (if different than the type)

•
'reportable' = Should this field show up in the list of fields for the reporting module (if
applicable).

•
'required' = true if this field is a required field. If the field is placed on an edit view, the
field must be populated before the user can save.

• 'default' = The default value for this field

•
'massupdate' = false if you do not want this field to show up in the mass update section
at the bottom of the list views. Defaults to true.

• 'rname' = (for type relate only) The field from the related variable that has the text

•
'id_name' = (for type relate only) The field from the bean that stores the id for the
related Bean

•
'source' = 'nondb' if the field value does not come from the database. This can be used
for calculated values or values retrieved in some other way.

• 'sort_on' = The field to sort by if multiple fields are used.

•
'fields' = (for concatenated values only) An array containing the fields that are
concatenated.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 130

•
'db_concat_fields'= (for concatenated values only) An array containing the fields to
concatenate in the DB.

•
‘unified_search’ = True if this field should be searched through Global Search, defaults to
false. Has no effect if the Dictionary array setting ‘unified_search’ is not set to true.

•
‘enable_range_sesarch’ = (for date, datetime and numeric type fields only) True if this
field should support range searches.

• ‘dependency’ = Allows a field to have a predefined formula to control the field’s visibility.

•

‘studio’ = Controls the visibility of the field in Studio editor. If false, then the field will not
appear in any studio screens for the module. Otherwise, you may specify an Array of
view keys for which the field’s visibility should be removed from (ex:
array(‘listview’=>false) will hide the field in the listview layout screen).

The following example illustrates a standard ID field for a Bean.

'id' => array (

'name' => 'id',

'vname' => 'LBL_ID',

'type' => 'id',

'required'=>true,

),

Indices Array

This array contains a list of arrays that are used to create indexes in the database. The fields in this
array are:

o 'name' = The name of the index. This must be unique in most databases.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 131

o 'type' = The type of the index (primary, unique, or index)

o 'fields' = The fields to index. This is an ordered array.

The following example is to create a primary index called 'userspk' on the 'id' column

array('name' =>'userspk', 'type' =>'primary', 'fields'=>array('id')),

Relationships Array

The relationships array is used to specify relationships between Beans. Like the Indices array entries, it
is a list of names with array values.

• 'lhs_module' = The module on the left hand side of the relationship

• 'lhs_table' = The table on the left hand side of the relationship

• 'lhs_key' = The primary key column of the left hand side of the relationship

• 'rhs_module' = The module on the right hand side of the relationship

• 'rhs_table' = The table on the right hand side of the relationship

• 'rhs_key' = The primary key column of the right hand side of the relationship

• 'relationship_type' = The type of relationship ('one-to-many' or 'many-to-many')

• ‘relationship_role_column’ = The type of relationship role

• 'relationship_role_column_value' = Defines the unique identifier for the relationship role

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 132

The following example creates a reporting relationship between a contact and the person that they report
to. The reports_to_id field is used to map to the id field in the contact of the person they report to. This
is a one-to-many relationship in that each person is only allowed to report to one person. Each person is
allowed to have an unlimited number of direct reports.

'contact_direct_reports' => array(

'lhs_module' => 'Contacts',

'lhs_table' => 'contacts',

'lhs_key' => 'id',

'rhs_module' => 'Contacts',

'rhs_table' => 'contacts',

'rhs_key' => 'reports_to_id',

'relationship_type' => 'one-to-many'),

Many-to-Many Relationships

In the ./metadata directory, all the many-to-many relationships are defined and included in the
$dictionary array. The files are stored in ./metadata/<relation_table_name>MetaData.php. Tables are
generated based on these definitions. These files are included through the ./modules/
TableDictionary.php. If you create a custom many-to-many relationship, you will need to add the
reference to the new relationship by adding the new reference in the file custom/application/Ext/
TableDictionary/tabledictionary.php. You may need to create this file if it does not exist. These changes
will take effect after you clear the Sugar Cache by running the “Quick Repair and Rebuild” option from
the Admin Repair screen.

The following are the definitions for $dictionary[<relation_table>]. They are similar to the Vardefs. If
necessary use that page as a reference as well.

• <relation_table> - the index for this relationship in the $dictionary array

• table - the name of the table that is created in the database

•
fields - array containing arrays for each column definition. The join table must have a field
for the primary key of each table to be linked, a primary key for the join table itself, a
deleted field for relationship unlinking, and a date_modified field to track when the

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 133

relationship changes. Additional fields can be added to track the role played by the
relationship,

• indices - the database indices. Note see the example for indices below for necessary values.

• relationships - definitions of the relationships between the two tables

o lhs_module - the left hand module. Should match $beanList index

o lhs_table - the left hand table name

o lhs_key - the key to use from the left table

o rhs_module - the right hand module. Should match $beanList index

o rhs_table - the right hand table name

o rhs_key - the key to use from the right table

o relationship_type - relationship type

o join_table - join table used to join items

o join_key_lhs - left table key. Should exist in table field definitions above

o join_key_rhs - right table key. Should exist in table field definitions above

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 134

Note that Relationship metadata and the Vardefs are the critical building blocks of the new ListViews. In
conjunction with [module]/metadata/ListViewdefs.php, these three elements generate your ListView.

For example, you may need to display data from another module or even just another table (not part of
a module). To do this, you will need to get all your queries in order () AND add the reference in
Vardefs.php. The new ListViews can only display data registered in the Vardefs.

For example:

'store_name' => array ('name' => 'store_name',

'rname' => 'name',

'id_name' => 'id',

'vname' => 'LBL_STORE_NAME',

'type' => 'relate',

'link'=>'store_name',

'table' => 'jd_stores',

'join_name'=>'stores',

'isnull' => 'true',

'module' => 'Stores',

'dbType' => 'varchar',

'len' => 100,

'source'=>'non-db',

'unified_search' => false,

'massupdate' => false,

'comment' => 'The name of the store represented by the store_id field in customer_service'

),

In this case, Stores is not a module, but jd_stores is a table. The joins with that table are handled in
fill_in_additional_detail_fields(), fill_in_additional_list_fields(), create_list_query(), and (depending on

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 135

your situation) create_new_list_query(). You need to get all these things straight, but you will still not
get your data on your ListView if you do not register it in Vardefs.

Subpanels

Subpanels are used in a given module’s DetailView to display relationships with other modules. Examples
include the Contacts subpanel under the Opportunities module’s DetailView, or the Tasks subpanel for
the Projects module.

The references below are the areas in the code where subpanels are generated from. Running rebuild
relationships in the repair section in the admin panel is necessary after making changes to or creating
subpanels.

The module that contains the subpanel is where the vardefs array index is defined. There is an index
referring to the module that will appear as the subpanel of type 'link'.

One-to-Many Relationships

For Accounts, the reference necessary for the Cases subpanel is defined as follows in the ./modules/
Accounts/vardefs.php

'cases' => array (

'name' => 'cases',

'type' => 'link',

'relationship' => 'account_cases', //relationship definition is below

'module'=>'Cases',

'bean_name'=>'aCase',

'source'=>'non-db',

'vname'=>'LBL_CASES',

),

For a one-to-many, the 'relationship' index defined above must also be in the vardefs.

'account_cases' => array(

'lhs_module'=> 'Accounts',

'lhs_table'=> 'accounts',

'lhs_key' => 'id',

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 136

'rhs_module'=> 'Cases',

'rhs_table'=> 'cases',

'rhs_key' => 'account_id',

'relationship_type'=>'one-to-many'

),

Since this is a one-to-many, there is no need for a relationship table, which is only defined in the
./metadata directory.

Many-to-Many Relationships

For Accounts, the reference necessary for the Bugs subpanel is defined as follows in the ./modules/
Accounts/vardefs.php

'bugs' => array (

'name' => 'bugs',

'type' => 'link',

'relationship' => 'accounts_bugs', //relationship table

'module'=>'Bugs',

'bean_name'=>'Bug',

'source'=>'non-db',

'vname'=>'LBL_BUGS',

),

Since this is many-to-many relationship, and there already exists a relationship table, there is no need to
define the relationship in the vardefs. However, the relationship metadata must be defined as shown
below.

Relationship Metadata

If you have a many-to-many relationship, a table must exist for the relationship. For a new relationship,
you must add the details of the relationship file (accounts_bugsMetaData.php in this example) to
TableDictionary.php in the /modules directory. You must then run Repair Database to create the new
relationships table (accounts_bugs in the example below). To remain upgrade-safe you must put your
custom changes into /custom/application/ext/tabledictionary/tabledictionary.ext.php.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 137

In the ./metadata directory, the relationship must exist and included in the $dictionary array. To keep
consistent with the above accounts_bugs example, here is the content of the
accounts_bugsMetaData.php

$dictionary['accounts_bugs'] = array(

'table' => 'accounts_bugs', //the table that is created in the database

'fields' => array (

array('name' =>'id', 'type' =>'varchar', 'len'=>'36',), // id for relationship

array('name' =>'account_id', 'type' =>'varchar', 'len'=>'36'), // account id

array('name' =>'bug_id', 'type' =>'varchar', 'len'=>'36'), // bug id

array('name' => 'date_modified','type' => 'datetime'), // necessary

array('name' =>'deleted', 'type' =>'bool', 'len'=>'1', 'required'=>true, 'default'=>'0') // necessary

), // the indices are necessary for indexing and performance

'indices' => array (

array('name' =>'accounts_bugspk', 'type' =>'primary', 'fields'=>array('id')),

array('name' =>'idx_acc_bug_acc', 'type' =>'index', 'fields'=>array('account_id')),

array('name' =>'idx_acc_bug_bug', 'type' =>'index', 'fields'=>array('bug_id')),

array('name' => 'idx_account_bug', 'type'=>'alternate_key', 'fields'=>array('account_id','bug_id'))

),

'relationships' => array(

'accounts_bugs' => array(

'lhs_module'=> 'Accounts', // the left hand module - should match $beanList index

'lhs_table'=> 'accounts', // the left hand table name

'lhs_key' => 'id', // the key to use from the left table

'rhs_module'=> 'Bugs', // the right hand module - should match $beanList index

'rhs_table'=> 'bugs', // the right hand table name

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 138

'rhs_key' => 'id', // the key to use from the right table

'relationship_type'=>'many-to-many', // relationship type

'join_table'=> 'accounts_bugs', // join table - table used to join items

'join_key_lhs'=>'account_id', // left table key - should exist in table field definitions above

'join_key_rhs'=>'bug_id' // right table key - should exist in table field definitions above

)

)

)

Layout Defs

This is the file that contains the related modules to create subpanels for. It is stored in the $layout_defs
array $layout_defs[<module>]['subpanel_setup'][<related_module>].

This example is from the account metadata/subpaneldefs.php

'contacts' => array(

'order' => 30,// the order in which this subpanel is displayed with other subpanels

'module' => 'Contacts',

'subpanel_name' => 'default', // in this case, it will use ./modules/Contacts/subpanels/default.php

'get_subpanel_data' => 'contacts',

'add_subpanel_data' => 'contact_id',

'title_key' => 'LBL_CONTACTS_SUBPANEL_TITLE',

'top_buttons' => array(// this array defines the top buttons

array('widget_class' => 'SubPanelTopCreateAccountNameButton'),

array('widget_class' => 'SubPanelTopSelectButton', 'mode'=>'MultiSelect')

),

),

In the language file for the module containing the subpanel, the following values need to be added.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 139

• The reference used in 'title_key' as shown above

• In the example, it would be $mod_strings['LBL_CONTACTS_SUBPANEL_TITLE'] = 'Contacts';

• The reference used in 'vname' as shown in the vardefs section

In the example, it would be $mod_strings['LBL_CASES'] = 'Cases';

Shortcuts

Menu shortcuts for modules are easy to implement.. There is a ./modules/MODULE_NAME/Menu.php in
all applicable modules. Shortcuts are generated through:

$module_menu[]=Array("URLLINK", "SHORTCUTTEXT", "IMAGEFILENAME");

• URLLINK - the link that the shortcut points to

• SHORTCUTTEXT - the text that displays in the menu

•
IMAGEFILENAME - the filename in the themes image directory
Note: A .gif extension is required for the image file and assumed in the definition.

Example from ./modules/Cases/Menu.php

$module_menu[] =
Array("index.php?module=Cases&action=index&return_module=Cases&return_action=DetailView",
$mod_strings['LNK_CASE_LIST'],"Cases")

TimeDate 2.0

The redesign of TimeDate functionality will allow for standardization of date/time handling throughout
the Sugar application and provide consistent, robust and testable API for handling date and time.

Design goals:

• use PHP date/time functionality (date extension, DateTime classes)

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 140

• Backwards Compatibilty (BC) for user code

• Always use TimeDate APIs for any date/time calculations

• always know which format the data is in

• eliminate DateTimeUtils

Terms

• TZ – Time Zone such as PDT, Europe/London, etc.

• SDT - SugarDateTime object (see below)

• User - SugarCRM user preferences, accessed through User object

•
BC - Backwards Compatibility refers to support for existing legacy code that 3rd party
developers may have created

Implementation

The date/time functionality is implemented as a part of the new TimeDate class. This class supports both
operating on date objects and conversion between string formats.

Date is stored in SugarDateTime object, which extends DateTime class with additional functionality. All
calculations etc. should use this object.

Note that SugarDateTime object carries both time and timezone information, so when doing time-related
calculations (like setting time to 00:00:00 to achieve midnight) you should be aware of the time zone
and ensure proper timezone is set if necessary.

Compatibility

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 141

Most methods of old TimeDate are supported as of now, except for private and deprecated ones. This is
on our to-do list. Some of the old TimeDate methods are deprecated and not recommended for use in
the Sugar code, but they would still work.

String format conversion methods are OK to use and will be supported for BC reasons for the foreseeable
future.

Internal format

It is planned to eventually move to using SugarDateTime for storing date/time in Sugar objects. We
think it may not yet be the time to do so, due to BC reasons. Therefore, we plan to use string in DB
format for all internal Sugar storage and convert to user display format when displaying date is
necessary.

Note that calculations still should be made on SugarDateTime objects, which should be brought to proper
timezone if necessary.

Caching

Some of the new TimeDate functions involve repeated operations with cached results. You can disable
the cache by setting allow_cache property of TimeDate object to false.

User settings

TimeDate supports operating relative to user preferences. Many functions accept User object, which
define the following:

• Date/time formats

• Timezone

If a null value is passed instead of a User object, then either the current user's settings or the default
system settings (if no current user) are used.

Supported Timezones are those that are supported by PHP date extension. For more information, see:

http://us.php.net/manual/en/timezones.php

Current time

TimeDate can return current time in various forms:

• as user-format string - now()

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 142

http://us.php.net/manual/en/timezones.php

• as DB string - nowDB()

• as SDT object - getNow() (SDT object will have UTC timezone set by default)

The result of now() is cached by default and is the same throughout the request. getNow() returns a
copy of the cached object so it can be manipulated at will.

Getting date

Various from*() methods are used to get SDT object from a string. These methods allow you to get the
time from the following:

• timestamp

• db-formatted string

• array of date/time values

• user-formatted string

• any string date() understands

Any function accepting User argument return user-TZ objects, other functions return UTC-based objects.

Printing date

SDT object can be output as string using as*() methods in the following ways:

• DB-formatted string

• User-formatted string

• String of any format using standard PHP format() method

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 143

asDb*() and asUser*() converts the SDT object into the proper timezone by default.

Timezones

tzGMT() and tzUser() can be used to convert SDT objects between time zones. These functions the
passed object and can be used repeatedly on the same object.

Date & time separation

Currently it is assumed that time and date are separated by a space and this is the only space in the
datetime string. It is a limitation that we need to solve in the future.

It is recommended, for future-compatibility, to always use TimeDate functions like split_date_time() and
merge_date_time() for splitting/merging in Sugar code.

Calculations

PHP's DateTime has a very powerful engine for date calculations that allows expression of relative time
easily, such as "Sunday of next week", "-7 days", etc. Use modify() method on SDT to modify the object
in-place or get() method to get a new object with modified values.

For more information on PHP date calculations, see:

http://us.php.net/manual/en/datetime...s.relative.php

Using symbolic expressions ("+1 day") is always preferred to using direct calculations (adding 60*60*24
to timestamp). The first method is cleaner and safer. You need to be aware of the timezone on the SDT
object.

SugarDateTime class also provided utility methods like get_day_begin() and get_day_end() that return
beginning and end of a certain day. Timezone awareness is especially recommended for those methods.

Conversion

We plan to convert the entire Sugar application to use TimeDate APIs. Main directions to work on are:

• Convert direct use of date() and gmdate() to TD2 APIs

• Eliminate manual calculations of dates/times - use modify/get APIs

• Eliminate DateTimeUtils - use SDT APIs instead

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
02_Application_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 144

http://us.php.net/manual/en/datetime.formats.relative.php

• Ensure consistent data format in bean objects

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 145

Customizing Sugar
1. Overview

2. Introduction

2.1. Tips

2.1.1. Making upgrade-safe customizations

2.1.2. Installing Third-Party Modules

2.1.3. Naming Your Custom Modules

2.1.4. Be Familiar with Object Oriented Programming

2.1.5. Use Developer Mode when Customizing the User Interface

3. The Custom Directory

3.1. Vardefs

3.1.1. Master Directories

3.1.2. Production Directories

3.1.3. Description

3.2. Languages

3.2.1. Master Directories

3.2.2. Production Directories

3.2.3. Description

3.3. Shortcuts

3.3.1. Master Directories

3.3.2. Production Directories

3.3.3. Description

3.4. Layoutdefs

3.4.1. Master Directories

3.4.2. Production Directories

3.4.3. Rule

3.4.4. Description

4. Module Builder

4.1. Creating New Modules

4.2. Understanding Object Templates

4.3. Editing Module Fields

4.4. Editing Module Layouts

4.5. Building Relationships

4.6. Publishing and Uploading Packages

4.7. Adding Custom Logic using Code

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 146

4.7.1. Logic Hooks

4.7.2. Custom Bean files

Overview
You can customize Sugar to tailor the application to meet your business needs. This chapter explains the
different ways to customize SugarCRM.

Introduction
The extension framework in Sugar was created to help implement the customization of existing modules
or create entirely new modules. Through the various extensions available you can extend most of the
functionality of Sugar in an upgrade-safe manner. The Module Builder and Studio tools, available from
the Admin Home page, allow you to make the most common customizations that are outlined below. You
can then further extend your system by adding upgrade-safe custom code.

Most common customizations are done with the suite of developer tools provided in the Sugar Admin
screen. These tools include:

• Studio - Edit Dropdowns, Custom Fields, Layouts and Labels

• Module Builder - Build new modules to expand the functionality of SugarCRM

• Module Loader - Add or remove Sugar modules, themes, and language packs

• Dropdown Editor - Add, delete, or change the dropdown lists in the application

• Rename Tabs - Change the label of the module tabs

•
Configure Module Tabs and Subpanels - Choose which module tabs and sub-panels to
display within the application

• Configure Shortcut Bar – Select which modules are available in the Shortcuts bar.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 147

• Configure Grouped Modules - Create and edit groupings of tabs

For further information on how to use these tools, please refer to the Sugar Application Guide. This guide
will go into more detail on how to use the Module Builder and the Module Loader, as well as how to
extend the Sugar system at the code-level beyond what these tools provide.

Tips

Making upgrade-safe customizations

Because Sugar is an open source application, you have access to the source code. Keep in mind that any
code customizations you make to the core files that ship with the Sugar application will need to be
merged forward or re-factored manually when you upgrade to the next patch or major release.

However, any changes you make using the developer tools provided on the Admin screen (Module
Builder, Studio, etc.) are upgrade-safe. Also, any code changes you make in the custom/ directory are
also upgrade-safe.

Installing Third-Party Modules

Be aware that not all third-party modules you install on your Sugar system (such as modules found on
SugarForge.org) have been designed to interoperate error-free with other modules and, hence, may not
be upgrade-safe. Code changes made by a third-party developer and distributed in a module could
potentially modify core files which would require special attention during an upgrade. Also, two different
modules could conflict with one another in the changes they make to your system.

Naming Your Custom Modules

If you create a new module or a Sugar Dashlet without using the Module Builder, be sure to give your
new directories unique names. This will prevent conflicts with future modules added by the Sugar team.
For example, a best practice would be to add a unique prefix to your new module’s directory name such
as “zz_Brokers” for a new Brokers module.

Be Familiar with Object Oriented Programming

Much of extending the Sugar functionality is based around extending and overriding the SugarCRM base
classes. Developers need to be familiar with the basics of object-oriented programming and are
encouraged to extend the SugarCRM base classes only to the minimum extent necessary.

Use Developer Mode when Customizing the User Interface

When developing in Sugar, we suggest that you turn on the Developer Mode (Admin->System
Settings->Advanced->Developer Mode) to get the system to ignore the cached metadata files. This is
especially helpful when you are directly altering templates, metadata, or language files. When using

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 148

Module Builder or Studio, the system will automatically refresh the file cache. Be sure to turn off
Developer Mode when you have completed your customizations since this mode does degrade system
performance.

The Custom Directory
The Sugar system contains a top level directory called “custom” directory. This directory contains
metadata files and custom code that override and extend the base Sugar functionality. Some of the files
in this directory are auto-generated by the Module Builder, Studio, and Workflow tools (Sugar
Professional and Sugar Enterprise only) and other files can be added or modified directly by a developer.
Before discussing how a developer can use Sugar tools to modify the application, an understanding of
the custom directory is useful.

Vardefs

Vardefs define field attributes for a given module. Existing vardefs can be modified and new vardefs can
be created by modifying vardefs files in the custom directory.

Master Directories

Files in these directories can be edited and new files can be added to these directories.

/custom/Extension/modules/<MODULE_NAME>/Ext/Vardefs/

Production Directories

Files in these directories are auto-generated by the system and should not be modified.

/custom/modules/<MODULE_NAME>/Ext/Vardefs/vardefs.ext.php

Description

Vardefs files either replace field definitions entirely, or add to the ones that are available to a module. In
the Master Directories you can have many files such as:

• /custom/Extension/modules/Calls/Ext/Vardefs/New_vardefs.php

• /custom/Extension/modules/Calls/Ext/Vardefs/Updated_Vardefs.php

During the repair function (Admin->Repair->Quick Repair and Rebuild), all of these files will be merged
together into the production directory and they become the file:

/custom/modules/Calls/Ext/Vardefs/vardefs.ext.php

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 149

For example, a vardefs extension file for the Calls module could contain the following:

/custom/Extension/modules/Calls/ext/Vardefs/Import_Vardefs.php

<?php

$dictionary['Call']['fields']['parent_type']['vname'] = 'LBL_PARENT_TYPE';

$dictionary['Call']['fields']['parent_id']['vname'] = 'LBL_PARENT_ID';

$dictionary['Call']['fields']['deleted']['importable'] = false;

$dictionary['Call']['fields']['related_id'] = array (

'name' => 'related_id',

'vname' => 'LBL_RELATED_ID',

'type' => 'id',

'required' => false,

'reportable' => false,

'audited' => true,

'comment' => 'ID of a related record of this call',

);

?>

This would change the values for the “vname” of parent_type and parent_id, it would add an
“importable” value to the deleted field and set it to false and then add a whole new field called related_id
to the calls field list.

Languages

It is possible to override display string values for a given language and create entirely new strings used
by new custom fields.

Master Directories

Files in these directories can be edited and new files can be added to these directories.

• /custom/include/language/ (for $app_strings or $app_list_strings)

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 150

• /custom/Extension/application/Ext/Include/

•
/custom/Extension/modules/<MODULE_NAME>/Ext/Language/ (for $mod_strings
only)

Production Directories

Files in these directories are auto-generated by the system and should not be modified.

• /custom/include/language/<LANGUAGE_TAG>.lang.ext.php

•
/custom/modules/<MODULE_NAME>/Ext/Languages/
<LANGUAGE_TAG>.lang.ext.php

Description

Language files either replace entirely or add to the translated language items available to a module. In
the Master Directories you can have many files like:

• /custom/Extension/modules/Leads/Ext/Language/en_us.Custom_strings.php

• /custom/Extension/modules/Leads/Ext/Language/en_us.Custom_Languages.php

During the repair function (Admin->Repair->Quick Repair and Rebuild), all of these files will be merged
together into the production directory and they become the file:

/custom/modules/Leads/Ext/Language/en_us.lang.ext.php

For example, a language extension file for the Calls module could contain the following:

/custom/Extension/modules/Calls/ext/Languages/en_us.Import_Menu.php

<?php

// adding Import field changes

$mod_strings['LNK_IMPORT_CALLS'] = 'Import Calls';

$mod_strings['LBL_MODIFIED_NAME'] = 'Modified By';

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 151

$mod_strings['LBL_PARENT_TYPE'] = 'Parent Type';

$mod_strings['LBL_PARENT_ID'] = 'Parent ID';

?>

This would add four new display strings to the Calls module.

Shortcuts

It is possible to override or create new Shortcuts menu items.

Master Directories

Files in these directories can be edited and new files can be added to these directories.

• /custom/Extension/application/Ext/Menus/

• /custom/Extension/modules/<MODULE_NAME>/Ext/Menus/

Production Directories

Files in these directories are auto-generated by the system and must not be modified.

• /custom/application/Ext/Menus/menu.ext.php

• /custom/modules/<MODULE_NAME>/Ext/Menus/menu.ext.php

Description

Shortcut menu files either replace entirely, or add to the menu items available under the “Actions” list on
the module tabs. In the Master Directories you can have many files like:

• /custom/Extension/modules/Calls/Ext/Menus/New_menu_items.php

• /custom/Extension/modules/Calls/Ext/Menus/Custom_Menus.php

• /custom/Extension/modules/Calls/Ext/Menus/Menu_items.php

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 152

During the repair function (Admin->Repair->Quick Repair and Rebuild), all of these files will be merged
together into the production directory and they become the file:

/custom/modules/Leads/ext/Menus/menu.ext.php

For example, a menu extension file for the Calls module could contain the following:

<?php

if(ACLController::checkAccess('Calls', 'import', true)) {

$module_menu[]=Array("index.php?module=Calls&action=MakeIndex",

translate('LNK_INDEX_CALLS'), "Import"

);

}

?>

This would add a menu item to the Calls module’s Shortcuts menu. The $module_menu array takes
three elements.

• The first is the URL that the menu item will run.

•
The second is the text that will be shown on the menu, in this case we added some
custom language text in a separate custom language file that we will go over later in
this document.

•

The last is the name of the icon associated with this menu option. This word will have
“.gif” added to the end of it. If you want to use a png file here you must rename
import.png to import.gif and load it into the themes/default/images directory. Even
though it is named with the 'gif' extension it will still work.

If you added a $module_menu=array(); to the top of this file, you would effectively clear out any of
the standard menu items. You could then replace them all with new definitions.

If the custom file is in the /custom/Extension/application/Ext/Menus/ directory, then your menu changes
will affect shortcut menus in every module.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 153

Layoutdefs

Master Directories

Files in these directories can be edited and new files can be added to these directories.

• /custom/Extension/application/Ext/Layoutdefs/

• /custom/Extension/modules/<MODULE_NAME>/Ext/Layoutdefs/

Production Directories

Files in these directories are auto-generated by the system and must not be modified.

• /custom/application/Ext/Layoutdefs/layoutdefs.ext.php

• /custom/modules/<MODULE_NAME>/Ext/Layoutdefs/layoutdefs.ext.php

Rule

Use the following rule to add a sub-panel to a module:

For{$modulename}.php

where modulename is the name of the module to which you are adding the sub-panel.

Description

Layoutdefs are a little more complex than the other customization types. Each customization is made
across two files, the layout definition file and the actual layout file. In the Master Directories you can
have many files like the following:

•
/custom/Extension/modules/Accounts/Ext/Layoutdefs/
_overrideAccountContactsForAccounts.php

•
/custom/Extension/modules/Accounts/Ext/Layoutdefs/
_overrideAccountOpportunitiesForAccounts.php

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 154

During the repair function (Admin->Repair->Quick Repair and Rebuild), all of these files are merged
together into the production directory to become the file:

/custom/modules/Accounts/Ext/Layoutdefs/layoutdefs.ext.php

For example, a layoutdefs extension file for the Accounts module could contain the following:

/custom/Extension/modules/Accounts/ext/Layoutdefs/_overrideAccountContactsForAccounts.php

<?php

$layout_defs["Accounts"]["subpanel_setup"]["accounts_documents"] = array (

'order' => 100,

'module' => 'Documents',

'subpanel_name' => 'default',

'sort_order' => 'asc',

'sort_by' => 'id',

'title_key' => 'LBL_ACCOUNTS_DOCUMENTS_FROM_DOCUMENTS_TITLE',

'get_subpanel_data' => 'accounts_documents',

);

$layout_defs['Accounts']['subpanel_setup']['contacts']['override_subpanel_name'] =
'AccountForAccounts';

?>

The first array is setting up a subpanel for a new relationship between Documents and Accounts. While
there are many other files required to completely define this module relationship, (which we will go over
in the Relationship section below), this file just creates the links to the new subpanel that would be
located at:

custom/modules/Documents/Ext/subpanels/default.php

The second array simply points the system at a new subpanel definition file that will replace the subpanel
that shows Contacts related to Accounts. Since you cannot merge subpanel definition files, they do not
exist in the custom/Extension/ directory. The array in this file would tell the system to load the file:

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 155

custom/modules/Contacts/metadata/subpanels/AccountForAccounts.php

Module Builder
The Module Builder functionality allows programmers to create custom modules without writing code,
and to create relationships between new and existing CRM modules. To illustrate how to use Module
Builder, this article will show how to create and deploy a custom module. In this example, a custom
module to track media inquiries will be created to track public relations requests within a CRM system.
This use case is an often requested enhancement for CRM systems that applies across industries.

Creating New Modules

Module Builder functionality is managed within the ‘Developer Tools’ section of Sugar’s administration
console.

Upon selecting ‘Module Builder’, the user has the option of creating a “New Package”. Packages are a
collection of custom modules, objects, and fields that can be published within the application instance or
shared across instances of Sugar. Once the user selects “New Package”, the user names and describes
the type of Custom Module to be created. A package key, usually based on the organization or name of
the package creator is required to prevent conflicts between two packages with the same name from
different authors. In this case, the package will be named “MediaTracking” to explain its purpose, and a
key based on the author name will be used.

Once the new package is created and saved, the user is presented with a screen to create a Custom
Module. Upon selecting the “New Module” icon, a screen appears showing six different object templates.

Understanding Object Templates

Five of the six object templates contain pre-built CRM functionality for key CRM use cases. These objects
are:”basic”, “company”, “file”, “issue”, “person”, and “sale”. The “basic” template provides fields such as
Name, Assigned to, Team, Date Created, and Description. As their title denotes, the rest of these
templates contain fields and application logic to describe entities similar to “Accounts”, “Documents,
“Cases”, “Contacts”, and “Opportunities”, respectively. Thus, to create a Custom Module to track a type
of account, you would select the “Company” template. Similarly, to track human interactions, you would
select “People”.

For the media tracking use case, the user will use the object template “Issue” because inbound media
requests have similarities to incoming support cases. In both examples, there is an inquiry, a recipient of
the issue, assignment of the issue and resolution. The final object template is named “Basic” which is the
default base object type. This allows the administrator to create their own custom fields to define the
object.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 156

Upon naming and selecting the Custom Module template named “Issue”, the user can further customize
the module by changing the fields and layout of the application, and creating relationships between this
new module and existing standard or custom modules. This Edit functionality allows user to construct a
module that meets the specific data requirements of the Custom Module.

Editing Module Fields

Fields can be edited and created using the field editor. Fields inherited from the custom module's
templates can be relabeled while new fields are fully editable. New fields are added using the Add Field
button. This displays a tab where you can select the type of field to add as well as any properties that
field-type requires.

Editing Module Layouts

The layout editor can be used to change the appearance of the screens within the new module, including
the EditView, DetailView and ListView screens. When editing the Edit View or the Detail View, new panels
and rows can be dragged from the toolbox on the left side to the layout area on the right. Fields can then
be dragged between the layout area and the toolbox. Fields are removed from the layout by dragging
them from the layout area to the recycling icon. Fields can be expanded or collapsed to take up one or
two columns on the layout using the plus and minus icons. List, Search, Dashlet, and Subpanel views can
be edited by dragging fields between hidden/visible/available columns.

Building Relationships

Once the fields and layout of the Custom Module have been defined, the user then defines relationships
between this new module and existing CRM data by clicking “View Relationships”. The “Add Relationship”
button allows the user to associate the new module to an existing or new custom module in the same
package. In the case of the Media Tracker, the user can associate the Custom Module with the existing,
standard ‘Contacts’ module that is available in every Sugar installation using a many-to-many
relationship. By creating this relationship, end-users will see the Contacts associated with each Media
Inquiry. We will also add a relationship to the activities module so that a Media Inquiry can be related to
calls, meetings, tasks, and emails.

Publishing and Uploading Packages

After the user has created the appropriate fields, layouts, and relationships for the custom modules, this
new CRM functionality can be deployed. Click the “Deploy” button to deploy the package to the current
instance. This is the recommended way to test your package while developing. If you wish to make
further changes to your package or custom modules, you should make those changes in Module Builder,
and click the Deploy button again. Clicking the Publish button generates a zip file with the Custom
Module definitions. This is the mechanism for moving the package to a test environment and then
ultimately to the production environment. The Export button will produce a module loadable zip file,
similar to the Publish functionality, except that when the zip file is installed, it will load the custom

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 157

package into Module Builder for further editing. This is a good method for storing the custom package in
case you would like to make changes to it in the future on another Sugar instance.

After the new package has been published, the administrator must commit the package to the Sugar
system through the Module Loader. The administrator uploads the files and commits the new
functionality to the live application instance.

Adding Custom Logic using Code

While the key benefit of the Module Builder is that the Administrator user is able to create entirely new
modules without the need to write code, there are still some tasks that require writing PHP code. For
instance, adding custom logic or making a call to an external system through a Web Service. This can be
done in one of two methods.

Logic Hooks

One way is by writing PHP code that leverages the event handlers, or “logic hooks”, available in Sugar.
In order to accomplish this, the developer must create the custom code and then add it to the manifest
file for the “Media Inquiry” package.

Here is some sample code for a simple example of using the logic hooks. This example adds a time
stamp to the description field of the Media Inquiry every time the record is saved.

First, create the file AddTimeStamp.php with the following contents.

<?php

//prevents directly accessing this file from a web browser

if(!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry Point');

class AddTimeStamp {

function StampIt(& $focus, $event){

global $current_user;

$focus->description .= “\nSaved on ”. date(“Y-m-d g:i a”). “ by ”. $current_user->user_name;

}

}

?>

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 158

Next register this custom function by creating the file logic_hooks.php with the following contents.

<?php

// Do not store anything in this file that is not part of the array or the hook version. This file will

// be automatically rebuilt in the future.

$hook_version = 1;

$hook_array = Array();

// position, file, function

$hook_array['before_save'] = Array();

$hook_array['before_save'][] = Array(1, 'custom', 'custom/modules/Media/AddTimeStamp.php
','AddTimeStamp', 'StampIt');

?>

Now add these two files to the Media Inquiries zip file you just saved. Create a directory called
“SugarModules/custom/” in the zip file and add the two files there. Then modify the manifest.php in the
zip file to include the following definition in the $install_defs[‘copy’] array.

array (

'from' => '<basepath>/SugarModules/custom',

'to' => 'custom/modules/jsche_Media',

),

Custom Bean files

Another method is to add code directly to the custom bean. This is a more complicated approach
because it requires understanding the SugarBean class. However it is a far more flexible and powerful
approach.

First you must “build” your module. This can be done by either deploying your module or clicking the
Publish button. Module Builder will then generate a folder for your package in “custom/modulebuilder/
builds/”. Inside that folder is where Sugar will have placed the bean files for your new module(s). In this
case we want
“custom/modulebuilder/builds/MediaTracking/SugarModules/modules/jsche_mediarequest”

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 159

Inside you will find two files of interest. The first one is {module_name}sugar.php. This file is generated
by Module Builder and may be erased by further changes in module builder or upgrades to the Sugar
application. You should not make any changes to this file. The second is {module_name}.php. This is the
file where you make any changes you would like to the logic of your module. To add our timestamp, we
would add the following code to jsche_mediarequest.php

function save($check_notify = FALSE) {
global $current_user;
$this->description .= "\nSaved on " . date("Y-m-d g:i a"). " by "
. $current_user->user_name;
parent::save($check_notify);
}

The call to the parent::save function is critical as this will call on the out of box SugarBean to handle the
regular Save functionality. To finish, re-deploy or re-publish your package from Module Builder.

You can now upload this module, extended with custom code logic, into your Sugar application using the
Module Loader as described earlier.

Using the New Module

After you upload the new module, the new custom module appears in the Sugar instance. In this
example, the new module, named “Media” uses the object template “Issue” to track incoming media
inquiries. This new module is associated with the standard “Contacts” modules to show which journalist
has expressed interest. In this example, the journalist has requested a product briefing. On one page,
users can see the nature of the inquiry, the journalist who requested the briefing, who the inquiry was
assigned to, the status, and the description.

Module Loader

The Module Loader not only installs custom modules but installs the latest patches, themes, language
packs, and Sugar Dashlets. The $upgrade_manifest variable is used to upgrade the application.

The Module Loader relies on a file named manifest.php, which resides in the root directory of any
installable package.

Manifest Overview

The following section outlines the parameters specified in the $manifest array contained in the manifest
file (manifest.php). An example manifest file is included later for your reference.

$manifest array elements provide the Module Loader with descriptive information about the extension.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 160

o
acceptable_sugar_flavors - Specifies which Sugar Editions the package can be
installed on. Accepted values are any combination of: OS (valid prior to Sugar 5.0.0), CE
(valid after Sugar 5.0.0), PRO, and ENT.

o acceptable_sugar_versions - This directive contains two arrays:

o
exact_matches: each element in this array should be one exact version string, i.e.
“6.0.0b” or “6.1.0”

o
regex_matches: each element in this array should be one regular expression
designed to match a group of versions, i.e. “6\\.1\\.0[a-z]”

o author - Contains the author of the package, i.e. “SugarCRM Inc.”

o
copy_files - An array detailing the source and destination of files that should be copied
during installation of the package. See the example manifest file below for details.

o
dependencies - A set of dependencies that must be satisfied to install the module. This
contains two arrays:

o id_name : the unique name found in $installdefs.

o version: the version number.

o

description - A description of the package. Displayed during installation.

Note: Apostrophes (') are not supported in your description and will cause a Module
Loader error.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 161

o
icon - A path (within the package ZIP file) to an icon image that will be displayed during
installation. Examples include: “./patch_directory/icon.gif” and “./patch_directory/
images/theme.gif”

o
is_uninstallable - Setting this directive to TRUE allows the Sugar administrator to
uninstall the package. Setting this directive to FALSE disables the uninstall feature.

o
name - The name of the package. Displayed during installation. Note: Apostrophes (')
are not supported in your description and will cause a Module Loader error.

o published_date - The date the package was published. Displayed during installation.

o type - The package type. Accepted values are:

o
langpack - Packages of type langpack will be automatically added to the
“Language” dropdown on the Sugar Login screen. They are installed using the
Upgrade Wizard.

o module - Packages of type module are installed using the Module Loader.

o patch - Packages of type patch are installed using the Upgrade Wizard.

o
theme - Packages of type theme will be automatically added to the “Theme”
dropdown on the Sugar Login screen. They are installed using the Upgrade
Wizard.

o version - The version of the patch, i.e. “1.0” or “0.96-pre1” .

Installdef Definition

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 162

The following section outlines the parameters specified in the $installdef array contained in the manifest
file (manifest.php). An example manifest file is included later for your reference.

$installdef array elements are used by the Module Loader to determine the actual installation steps that
need to be taken to install the extension.

• id - A unique name for your module; for example, “Songs”

•
copy - An array detailing files to be copied to the Sugar directory. A source path and
destination path must be specified for each file or directory. See the example manifest
file below for details.

•
language - An array detailing individual language files for your module. The source path,
destination file, and language pack name must be specified for each language file. See
the example manifest file below for details.

•
layoutdefs - An array detailing individual layoutdef files, which are used primarily for
setting up subpanels in other modules. The source path and destination module must be
specified for each layoutdef file. See the example manifest file below for details.

•
layoutfields - An array detailing custom fields to be added to existing layouts. The fields
will be added to the edit and detail views of target modules. See the example manifest
file below for details.

•

vardefs - An array detailing individual vardef files, which are used primarily for defining
fields and non many-to-many relationships in other modules. The source path and
destination module must be specified for each vardef file. See the example manifest file
below for details.

•
menu - An array detailing the menu file for your new module. A source path and
destination module must be specified for each menu file. See the example manifest file
below for details.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 163

•
beans - An array specifying the bean files for your new module. The following sub-
directives must be specified for each bean:

o module: Your module’s name, “Songs”

o class: Your module’s primary class name, “Song”

o path: The path to your bean file where the above class is defined.

o tab: Controls whether or not your new module appears as a tab.

•
relationships - An array detailing relationship files, used to link your new modules to
existing modules. A metadata path must be specified for each relationship. See the
example manifest file below for details.

• custom_fields - An array detailing custom fields to be installed for your new module.
The following sub-directives must be specified for each custom field:

? name: The internal name of your custom field. Note that your custom field
will be referred to as <name>_c, as “_c” indicates a custom field.

? label: The visible label of your custom field

? type: The type of custom field. Accepted values include text, textarea,
double, float, int, date, bool, enum, and relate.

? max_size: The custom field’s maximum character storage size

? require_option: Used to mark custom fields are either required or option.
Accepted values include optional and required.

? default_value: Used to specify a default value for your custom field

? ext1: Used to specify a dropdown name (only applicable to enum type
custom fields)

? ext2: Unused

? ext3: Unused

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 164

? audited: Used to denote whether or not the custom field should be audited.
Accepted values include 0 and 1.

? module: Used to specify the module where the custom field will be added.

Upgrade Definition
This array definition describes the release(s) leading to the "version" element defined in $manifest. In the
sample manifest below it defines the Songs module versions 1.0 and 1.5 as preceding the current
version 2.0.
Module Loader Restrictions
SugarCRM’s hosting objective is to maintain the integrity of the standard Sugar functionality when we
upgrade a customer instance, and limit any negative impact our upgrade has on the customer’s
modifications.
Access Controls
The Module Loader includes a Module Scanner, which grants system administrators the control they need
to determine the precise set of actions that they are willing to offer in their hosting environment. This
feature is available in all editions of Sugar. Anyone who is hosting Sugar products can advantage of this
feature as well.
The specific Module Loader restrictions for the Sugar Open Cloud are documented in the Sugar
Knowledge Base.
Enable Package Scan
Scanning is disabled in default installations of Sugar, and can be enabled through a configuration setting.
This setting is added to config.php or config_override.php, and is not available to Administrator users to
modify through the Sugar interface.
To enable Package Scan and its associated scans, add this setting to config.php or config_override.php:

$GLOBALS[‘sugar_config’][‘moduleInstaller’][‘packageScan’] = true;

There are two categories of access controls now available:

• File scanning

• Module Loader actions

Enable File Scan
By enabling Package Scan, File Scan will be performed on all files in the package uploaded through
Module Loader. File Scan will be performed when a Sugar administrator attempts to install the package.
File Scan performs two types of checks:

1. File extension must be in the approved list of valid extension types

a. The default list of valid extension types is detailed in Appendix A.

b. Files do not contain function calls that are considered suspicious, based on a
blacklist.

i. Backticks (`) are never allowed by File Scan.

ii. The default blacklist of functions is detailed in Appendix B.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 165

To disable File Scan, add the following configuration setting to config.php or
config_override.php:
$GLOBALS[‘sugar_config’][‘moduleInstaller’][‘disableFileScan’] = true;

To add more file extensions to the approved list of valid extension types, add the file extensions to the
validExt array. The example below adds a .log file extension and .htaccess to the valid extension type
list:
$GLOBALS[‘sugar_config’][‘moduleInstaller’][‘validExt’] = array(‘log’, ‘htaccess’);

To add additional function calls to the black list, add the function calls to the blackList array. The
example below blocks the strlen() and strtolower() functions from being included in the package:

$GLOBALS[‘sugar_config’][‘moduleInstaller’][‘blackList’] = array(‘strlen’, ‘strtolower’);
To override the black list and allow a specific function to be included in packages, add the function call to
the blackListExempt array. The example below removes the restriction for the file_put_contents()
function, allowing it to be included in the package:

$GLOBALS[‘sugar_config’][‘moduleInstaller’][blackListExempt’] = array(‘file_put_contents’);
Disable Module Loader Actions
Certain Module Loader actions may be considered less desirable than others by a System Administrator.
A System Administrator may want to allow some Module Loader actions, but disable specific actions that
could impact the upgrade-safe integrity of the Sugar instance.
By default, all Module Loader actions are allowed. Enabling Package Scan does not affect the Module
Loader actions.
To disable specific Module Loader actions, add the action to the disableActions array. The example below
restricts the pre_execute and post_execute actions:

$GLOBALS[‘sugar_config’][‘moduleInstaller’][‘disableActions’] = array(‘pre_execute’,
‘post_execute’);

A list of all actions available in Module Loader is detailed in Appendix C.
$GLOBALS['sugar_config']['disable_uw_upload'] = true;

This configuration parameter blocks the upload capabilities of the Upgrade Wizard, intended for hosting
providers. It behaves similarly to the use_common_ml_dir parameter for Module Loader.
Restricted Copy
To ensure upgrade-safe customizations, it is necessary for system administrators to restrict the copy
action to prevent modifying the existing Sugar source code files. New files may be added anywhere (to
allow new modules to be added), but any core Sugar source code file must not be overwritten. This is
enabled by default when you enable Package Scan.
To disable Restricted Copy, use this configuration setting:
$GLOBALS[‘sugar_config’][‘moduleInstaller’][‘disableRestrictedCopy’] = true;

Default Valid File Extensions

• png

• gif

• jpg

• css

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 166

• js

• php

• txt

• html

• htm

• tpl

• md5

• pdf

Default Blacklist of Functions
eval
exec
system
shell_exec
passthru
chgrp
chmod
chown
file_put_contents
file
fileatime
filectime
filegroup
fileinode
filemtime
fileowner
fileperms
fopen
is_executable
is_writable
is_writable
lchgrp
lchown
linkinfo
lstat
mkdir
parse_ini_file
rmdir
stat
tempnam
touch

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 167

ulink
getimagesize
copy
link
rename
symlink
move_uploaded_file
chdir
chroot
sugar_chown
sugar_fopen
sugar_mkdir
sugar_file_put_contents
sugar_chgrp
sugar_chmod
sugar_touch

Module Loader Actions
pre_execute – Called before a package is installed
install_mkdirs – Creates directories
install_copy – Copies files or directories
install_images – Install images into the custom directory
install_menus – Installs menus to a specific page or the entire Sugar application
install_userpage – Adds a section to the User page
install_dashlets – Installs dashlets into the Sugar application
install_administration – Installs an administration section into the Admin page
install_connectors – Installs Sugar Cloud Connectors
install_vardefs – Modifies existing vardefs
install_layoutdefs – Modifies existing layouts
install_layoutfields – Adds custom fields
install_relationships – Adds relationships
install_languages – Installs language files
install_logichooks – Installs a new logic hook
post_execute – Called after a package is installed

Sample Manifest
The following sample manifest file defines the $manifest and $installdef array elements for a new module
(Songs) which depends on two other modules: "Whale Pod" and "Maps". In addition to defining the
$manifest and $installdef array elements, it also defines the $upgrade_manifest array.

<?php
$manifest = array(
'acceptable_sugar_versions' => array(),
'is_uninstallable' => true,
'name' => 'Song Module',
'description' => 'A Module for all your song needs',
'author' => 'Ajay',
'published_date' => '2005/08/11',
'version' => '2.0',
'type' => 'module',
'icon' => '',
'dependencies' => array (
array ('id_name' => 'whale_pod', 'version => '1.0'),
array ('id_name' => 'maps', 'version => '1.5'),
),
);
$installdefs = array (

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 168

'id' => 'songs',
'image_dir' => '<basepath>/images',
'copy' => array (
array (
'from' => '<basepath>/module/Songs',
'to' => 'modules/Songs',
),
),
'language' => array (
'from'=> '<basepath>/administration/en_us.songsadmin.php'
'to_module'=> 'application',
'language'=>'en_us'
),
array (
'from'=> '<basepath>/administration/en_us.songsadmin.php',
'to_module'=> 'Administration',
'language'=>'en_us'
),
),
'layoutdefs'=> array(
array(
'from'=> '<basepath>/layoutdefs/contacts_layout_defs.php',
'to_module'=> 'Contacts',
),
),
'layoutfields'=> array(
array(
'additional_fields'=> array(
'Songs' => 'music_name_c',
),
),
array(
'additional_fields'=> array(
'Songs' => 'label_company_c',
),
),

),
'vardefs'=> array(
array(
'from'=> '<basepath>/vardefs/contacts_vardefs.php',
'to_module'=> 'Contacts',
),
),
'administration'=> array (
array ('from'=>'<basepath>/administration/songsadminoption.php',),
),
'beans'=> array (
array (
'module'=> 'Songs',
'class'=> 'Song',
'path'=> 'modules/Songs/Song.php',
'tab'=> true,
)

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 169

),
'relationships'=>array (
array (
'meta_data'=>'<basepath>/relationships/contacts_songsMetaData.php',
),
array (
'meta_data'=>'<basepath>/relationships/products_songsMetaData.php',
)
),
'custom_fields'=>array (
'array (
'name'=> 'music_name',
'label'=>'Music Name',
'type'=>'varchar',
'max_size'=>255,
'require_option'=>'optional',
'default_value'=>' ',
'ext1' => 'name',
'ext2' => 'Accounts',
'ext3' => ' ',
'audited'=>0,
'module'=>'Songs',
),
array (
'name'=>'label_company',
'label'=>'Label',
'type'=>'relate',
'max_size'=>36,
'require_option'=>'optional',
'default_value'=>'',
'ext1'=>'name',
'ext2'=>'Accounts',
'ext3'=>'', 'audited'=>0,
'module'=>'Songs',
),
),
);

$upgrade_manifest = array (
'upgrade_paths' => array (
'1.0' => array(
'id'=>'songs',
'copy'=>array(
array (
'from'=> '<basepath>/module/Songs',
'to'=> 'modules/Songs',
),
),
),
'1.5' => array (
'id'=>'songs',
'copy' => array(
array (
'from'=> '<basepath>/module/Songs',

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 170

'to'=> 'modules/Songs',
),
),
),
),
);
?>

Business Logic Hooks
Custom Logic (or "Business Logic Hooks") allows you to add functionality to certain actions, such as
before saving a bean, in an upgrade-safe manner. This is accomplished by defining hooks, which are
placed in the custom/ directory, which will be called in the SugarBean in response to events at runtime.
Because the code is located separate from the core SugarCRM code, it is upgrade-safe.
See this SugarForge project for a complete example of a useful business hook.
Hook Definition
The code that declares your custom logic is located in: custom/modules/<CURRENT_MODULE>/
logic_hooks.php. The format of the declaration follows.
$hook_version
All logic hooks should define the $hook_version that should be used. Currently, the only supported
$hook_version is 1.

$hook_version = 1
$hook_array
Your logic hook will also define the $hook_array. $hook_array is a two dimensional array:

o name: the name of the event that you are hooking your custom logic to

o array: an array containing the parametersneeded to fire the hook

A best practice is for each entry in the top level array to be defined on a single line to make it easier to
automatically replace this file. Also, logic_hooks.php should contain only hook definitions; because the
actual logic is defined elsewhere.
For example:

$hook_array['before_save'][] = Array(1, test, 'custom/modules/Leads/test12.php', 'TestClass',
'lead_before_save_1');

Available Hooks
The hooks are processed in the order in which they are added to the array. The first dimension is simply
the current action, for example before_save. The following hooks are available:
Application hooks
These hooks do not make use of the $bean argument.

o after_ui_frame

o Fired after the frame has been invoked and before the footer has been invoked

o after_ui_footer

o Fired after the footer has been invoked

o server_round_trip

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 171

http://www.sugarforge.org/projects/deassign/

o Fired at the end of every Sugar page

Module hooks

o before_delete

o Fired before a record is deleted

o after_delete

o Fired after a record is deleted

o before_restore

o Fired before a record is undeleted

o after_restore

o Fired after a record is undeleted

o after_retrieve

o Fired after a record has been retrieved from the database. This hook does not
fire when you create a new record.

o before_save

o

Fired before a record is saved.
Note: With certain modules, like Cases and Bugs, the human-readable ID of
the record (like the case_number field in the Case module), is not available
within a before_save call. This is because this business logic has not been
executed yet.

o after_save

o

Fired after a record is saved.
Note: With certain modules, like Cases and Bugs, the human-readable ID of
the record (like the case_number field in the Case module), is not available
within a before_save call. This is because this business logic simply has not
been executed yet.

o process_record

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 172

o

Fired immediately prior to the database query resulting in a record being made
current. This gives developers an opportunity to examine and tailor the
underlying queries. This is also a perfect place to set values in a record’s fields
prior to display in the DetailView or ListView. This event is not fired in the
EditView.

Hooks for Users module

o before_logout

o Fired before a user logs out of the system

o after_logout

o Fired after a user logs out of the system

o after_login

o Fired after a user logs into the system.

o after_logout

o Fired after a user logs out of the system.

o before_logout

o Fired before a user logs out of the system.

o login_failed

o Fired on a failed login attempt

Options Array
The second dimension is an array consisting of:

o Processing index => For sorting before exporting the array

o Label/type => Some string value to identify the hook

o PHP file to include => Where your class is located. Insert into ./custom.

o PHP class the method is in => The name of your class

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 173

o PHP method to call => The name of your method

Thus a given class may have multiple methods to fire, each within a single upgrade-safe PHP file.
The method signature for version 1 hooks is:

function NAME(&$bean, $event, $arguments)

Where:

o $bean - $this bean passed in by reference.

o $event - The string for the current event (i.e. before_save)

o $arguments - An array of arguments that are specific to the event.

Packaging Custom Logic Hooks
You can package logic hooks with a package and load through the Module Loader.
Along with the other directives for packaging files you can include an entry for ‘logic_hooks’. A snippet of
the manifest.php may look similar to this:
<?php
$installdefs = array(
'logic_hooks' => array(
array(
'module' => 'Accounts',
'hook' => 'after_save',
'order' => 99,
'description' => 'Account sample logic hook',
'file' => 'modules/Sample/sample_account_logic_hook_file.php',
'class' => 'SampleLogicClass',
'function' => 'accountAfterSave',
),
),
);
You must include the ‘modules/Sample/sample_account_logic_hook_file.php’ as part of your install_defs
‘copy’ directive so it can be run from the logic hook. When the Module Loader encounters the
‘logic_hooks’ entry in the installdefs, it will write out the appropriate file so that your logic hooks can be
executed.
Using Custom Logic Hooks
The section above shows how to create a custom_logic_hook that runs the function updateDescription()
from the class updateDescription (those do not have to be the same as they are in this example) in the
PHP file updateDescription.php. Below is the actual script from that PHP file.

class updateDescription {
function updateDescription(&$bean, $event, $arguments) {
$bean->description = html_entity_decode($bean->description);
$bean->fetched_row['description'] = $bean->description;
}
}

You see that the $bean is fed into the function and allows access to all of the fields for the currently
selected record. Any changes you make to the array will be reflected in the actual data. For example, in
this script we are changing the description field. As shown above, there is
$event is set to whatever event is currently running like after_retrieve or before_delete.
Tips

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 174

A few cautions around using logic hooks apply:

o It is not possible to hook logic to beans being displayed in a sub-panel.

o There is no bean that fires specifically for the ListView, DetailView or EditViews user
interface events. Use either the 'process_record' or 'after_retrieve' logic hooks.

o
In order to compare new values with previous values to see whether a change has
happened, use $bean->fetched_row['<field>'] (old value) and $bean-><field> (new
value) in the before_save logic hook.

o

Make sure that the permissions on your logic_hooks.php file and the class file that it
references are readable by the web server. If this is not done, Sugar will not read the
files and your business logic extensions will not work.
For example, *nix developers who are extending the Tasks logic should use the following
command for the logic_hooks file and the same command for the class file that will be
called.

[sugarcrm]# chmod +r custom/modules/Tasks/logic_hooks.php

o
Make sure that the entire custom/ directory is writable by the web server, or
else the logic hooks code will not work properly.

User Interface Customizations
While the intention of the metadata framework is to abstract some of the value retrieval and display logic
for the modules, there will inevitably be a need to customize the framework with separate hooks and
logic pertaining to the module's unique business needs.

Custom Grouping of Values
This is a common scenario in DetailViews, especially for address blocks. This can be achieved as follows:

array (
'name' => 'date_modified',
'customCode' => '{$fields.date_modified.value} {$APP.LBL_BY} {$fields.modified_by_name.value}',
'label' => 'LBL_DATE_MODIFIED',
),

This will group the date_modified value and the modified_by_name values together with the
$APP.LBL_BY label in between. The 'customCode' key is a direct Smarty inline code replacement. At the
time of parsing the $fields array will be populated with the values populated for the request bean
instance.
Custom Buttons
By default, the metadata framework provides default implementations for Cancel, Delete, Duplicate, Edit,
Find Duplicates, and Save buttons. However, you may wish to use some of the default buttons or add
additional buttons. Here is an example:

'templateMeta' => array(
'form' => array(
'buttons'=>array('EDIT', 'DUPLICATE', 'DELETE', array(
'customCode'=>
'<form action="index.php" method="POST" name="Quote2Opp" id="form">
<input title="{$APP.LBL_QUOTE_TO_OPPORTUNITY_TITLE}"
accessKey="{$APP.LBL_QUOTE_TO_OPPORTUNITY_KEY}"

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 175

class="button"type="submit"
name="opp_to_quote_button"
value="{$APP.LBL_QUOTE_TO_OPPORTUNITY_LABEL}">
</form>'
),
),
),

Here we are adding a custom button with the label defined in the Smarty variable
{$APP.LBL_QUOTE_TO_OPPORTUNITY_LABEL}. The EDIT, DUPLICATE and DELETE buttons are rendered and
then the snippet of code in this 'customCode' block is added.
The code to render the buttons specified in the metadata files may be found in include/Smarty/
function.sugar_button.php.
Creating New Custom Displays
In this scenario, you wish to take advantage of the metadata framework to do some of the processing for
a subset of the fields. However, the provided user interface generated does not meet the needs of your
module, which requires richer UI functionality. Typically this scenario occurs when the EditView or
DetailView for the module contains UI components that do not fit the framework of a table layout that
produced by the metadata. For example, in addition to displaying the properties for the bean instance of
the module, there is also a lot of information to be displayed for related beans, mashups, etc.
This type of customization may be achieved by a combination of overriding the footer.tpl file in the
templateMeta section of the metadata file and creating a view.edit.php file to override the default MVC
EditView handling. For example, consider the Quotes module's editviewdefs.php file:

'templateMeta' => array(
'maxColumns' => '2',
'widths' => array(
array('label' => '10', 'field' => '30'),
array('label' => '10', 'field' => '30')
),
'form' => array('footerTpl'=>'modules/Quotes/tpls/EditViewFooter.tpl'),
),

Note: You do not have to necessarily create a view.edit.php file, but usually at this point of
customization, you will want to add variables to your customized template that are not assigned by the
generic EditView handling from the MVC framework. See the next example, Overriding the View, for
more information about sub-classing the EditView and assigning Smarty variables to the resulting
templates.
Your EditViewFooter.tpl file can now render the necessary user interface code that the generic metadata
framework could not:

{$SOME_CRAZY_UI_WIDGET} <----- You can either create this HTML in edit.view.php or place it
here
<applet codebase="something"> <---- Let's add an Applet!
</applet>
EOF expected: /content/body/div[4]/div[7]/div[2]/div[452]/a/span, line 1, column 9 (click for
details)
<--- Include the generic footer.tpl file at the end

If you want to edit the top panel to provide customized widgets then you can override the header.tpl file
instead. In that scenario, the smarty tag to include the generic header.tpl would likely appear at the top
of the custom template file.
Overriding the View
Using the MVC framework, you define your module's own view.edit.php or view.detail.php file to subclass
ViewEdit (for EditView) or ViewDetail (for DetailView). Then you override either the process or display
methods to do any intermediary processing as necessary. This technique should be employed when you

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 176

still want to take advantage of the rendering/layout formatting done by the metadata framework, but
wish to tweak how some of the values are retrieved.

// Contents of module/[$module]/view/view.edit.php file
require_once('include/json_config.php');
require_once('include/MVC/View/views/view.edit.php');
class CallsViewEdit extends ViewEdit {
function CallsViewEdit(){
parent::ViewEdit();
}

function display() {
global $json;
$json = getJSONobj();
$json_config = new json_config();
if (isset($this->bean->json_id) && !empty ($this->bean->json_id)) {
$JavaScript = $json_config->get_static_json_server(false, true, 'Calls', $this->bean->json_id);
} else {
$this->bean->json_id = $this->bean->id;
$JavaScript = $json_config->get_static_json_server(false, true, 'Calls', $this->bean->id);
}

// Assign the Javascript code to Smarty .tpl
$this->ss->assign('JSON_CONFIG_JAVASCRIPT', $JavaScript);
parent::display();
}
}

In the file modules/Calls/metadata/editviewdefs.php we have the following defined for the templateMeta-
>JavaScript value:
'JavaScript' => '<script type="text/JavaScript">{$JSON_CONFIG_JAVASCRIPT}</script>'

Here the $JSON_CONFIG_JAVASCRIPT Smarty variable was the result of a complex operation and not
available via the vardefs.php file (i.e. there is no JSON_CONFIG_JAVASCRIPT declaration in the vardefs.php
file).
Creating a Custom Sugar Field
Let's try to create a new type of field for rendering a YouTube video. In this example, we will use a
custom text field in the Contacts module and then override the Detail View of the custom field in the
metadata file to link to our YouTube video.
The process is as follows:

1) Create a custom text field in the Contacts module from the Studio editor

2) Add this custom text field to both the Edit View and Detail View layouts

3) Save and deploy both the updated layouts.

4) Create a directory include/SugarFields/Fields/YouTube. The name of the directory
(YouTube) corresponds to the name of the field type you are creating.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 177

5)
In include/SugarFields/Fields/YouTube directory, create the file DetailView.tpl. For the
DetailView we will use the "embed" tag to display the video. In order to do this, you
need to add the following to the template file:

{if !empty(
EOF expected: /content/body/div[4]/div[7]/div[2]/div[492]/a/span, line 1, column 10 (click for
details)
)}
<object width="425" height="350">
<param name="movie" value="http://www.youtube.com/v/
EOF expected: /content/body/div[4]/div[7]/div[2]/div[494]/a/span, line 1, column 10 (click for
details)
></param>
<param name="wmode" value="transparent"></param>
<embed src="http://www.youtube.com/v/
EOF expected: /content/body/div[4]/div[7]/div[2]/div[496]/a/span, line 1, column 10 (click for
details)
" type="application/x-shockwave-flash"
wmode="transparent" width="425" height="350">
</embed>
</object>
{/if}

You will notice that we use the "{{" and “}}” double brackets around our variables. This implies that that
section should be evaluated when we are creating the cache file. Remember that Smarty is used to
generate the cached templates so we need the double brackets to distinguish between the stage for
generating the template file and the stage for processing the runtime view.
Also note that will use the default EditView implementation that is provided by the base sugar field. This
will give us a text field where people can input the YouTube video ID, so you do not need to create
EditView.tpl. Also, we do not need to provide a PHP file to handle the SugarField processing since the
defaults will suffice.

6) Now go to custom/modules/Contacts/metadata/detailview.php and add a type override to
your YouTube field and save. In this example, the custom field is named "youtube".

array (
'name' => 'youtube_c',
'type' => 'YouTube',
'label' => 'LBL_YOUTUBE',
),

Your custom field is now ready to be displayed. You can now find the ID value of a YouTube video to
insert into the EditView, and render the video in the DetailView. Remember to set your system to
Developer Mode, or delete the EditView.tpl or DetailView.tpl files in the cache/modules/Contacts
directory.
Adding QuickSearch to a Custom Field

1. Include the default configs from QuickSearchDefaults.php. Most of the time you can use the
predefined configurations and scripts.

require_once('include/QuickSearchDefaults.php');
$qsd = new QuickSearchDefaults();

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 178

2.
Then set up the config for the input box you wish to have SQS. Account, Team, and
User configs are available. The following configures SQS for account search on input
box w/ id of 'parent_name', user and team in similar fashion with defaults.

$sqs_objects = array('parent_name' => $qsd->getQSParent(),
'assigned_user_name' => $qsd->getQSUser(),
'team_name' => $qsd->getQSTeam());

Notes on structure of config - replace the default parameters if they are different for the page.

o method: Unless you make a new method on the JSON server, keep this as query.

o

populate_list: This defines the id's of the fields to be populated after a selection is
made.
QuickSearch will map the first item of field_list to the first item of populate_list. ie.
field_list[0] = populate_list[0], field_list[1] = populate_list[1].... until the end of populate
list.

o limit: reduce from 30 if query is large hit, but never less than 12.

o
conditions: options are like_custom, contains, or default of starts with
if using 'like_custom' also define 'begin'/'end' for strings to prepend or append to the user
input

o disable: set this to true to disable SQS (optional, useful for disabling SQS on parent
types in calls for example)

o
post_onblur_function: this is an optional function to be called after the user has made
a selection. It will be passed in an array with the items in field_list as keys and their
corresponding values for the selection as values.

$sqs_objects = array('account_name' => // this is the id
array(
// the method on to use on the JSON server
'method' => 'query',
'modules' => array('Accounts'), // modules to use
'field_list' => array('name', 'id'), // columns to select
// id's of the html tags to populate with the columns.
'populate_list' => array('account_name', 'account_id'),
'conditions' => // where clause, this code is for any account names that have A WORD
beginning with ...
array(array('name'=>'name','op'=>'like_custom','end'=>'%','value'=>''),
array('name'=>'name','op'=>'like_custom','begin'=>'% ','end'=>'%','value'=>'')),
'group' => 'or', // grouping of the where conditions
'order' => 'name', // ordering
'limit' => '30', // number of records to pull
'no_match_text' => $app_strings['ERR_SQS_NO_MATCH'] // text for no matching results
),

3. Include the necessary javascript files if sugar_grp1.js is not already loaded on the page.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 179

$quicksearch_js = '<script type="text/javascript" src="' . getJSPath('include/javascript/
sugar_grp1.js') . '"></script>';

4. Assign your config array to sqs_objects (important!)

$quicksearch_js .= '<script type="text/javascript" language="javascript">
sqs_objects = ' . $json->encode($sqs_objects) . '</script>';

5.
Add validation so that if there is no matching id for what the user has entered in an SQS
field, an alert shows. This is for fields such as assigned users where the form must submit a
valid ID.

$javascript->addToValidateBinaryDependency('account_name', 'alpha',
app_strings['ERR_SQS_NO_MATCH_FIELD'] .
$mod_strings['LBL_MEMBER_OF'], 'false', '', 'parent_id');

6. Add id tags and class name to the input box. Note that the input box must have
class="sqsEnabled"!

<input class="sqsEnabled" id="account_name" name='account_name' size='30' type='text'
value="{ACCOUNT_NAME}">
<input id='account_id' name='account_id' type="hidden" value='{ACCOUNT_ID}'>

Having trouble? Take a look at the file module/Contacts/BusinessCard.php.
Removing Downloads Tab for Sugar Plug-ins
Sugar Ultimate, Enterprise, Corporate, and Professional editions include a Downloads tab that appears on
the User Preferences page. This tab lists links to download Sugar Plug-ins for Microsoft Office. If you do
not want to display the Downloads tab to administrators and users, you need to add a configuration
parameter named disable_download_tab to the config_override.php file with the value set to true, as
shown below.

$sugar_config['disable_download_tab'] = true;
Range Search Customizations
Override the Smarty template files that render the range search widgets to customize search fields for
range searches or to add custom javascript validation to filter acceptable numbers or dates.
Copy the contents listed in Column A to contents listed in Column B as shown in table below:

Type of
field Column A Column B

Numeric include/SugarFields/Fields/Int/
RangeSearchForm.tpl

custom/include/SugarFields/Fields/Int/
RangeSearchForm.tpl

Date
include/SugarFields/Fields/
Datetimecombo/
RangeSearchForm.tpl

custom/include/SugarFields/Fields/
Datetimecombo/RangeSearchForm.tpl

The following is an example of changing the single input field in a numeric range search to be a
dropdown list of five possible values.

1. Create the file custom/include/SugarFields/Fields/Int/RangeSearchForm.tpl

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 180

2. Change the div contents of the section with id {$id}_range_div to:

<div id="{$id}_range_div" style="{if
$starting_choice=='between'}display:none;{else}display:'';{/if}">
{if empty($smarty.request.) && !empty($smarty.request.)}
{assign var="dropdown_value" value=$smarty.request.}
{else}
{assign var="dropdown_value" value=$smarty.request.}
{/if}
<select name='range_{$id}' id='range_{$id}' tabindex='' size='1'>
<option value="-10" {if $dropdown_value==-10}SELECTED{/if}>-10</option>
<option value="-5" {if $dropdown_value==-5}SELECTED{/if}>-5</option>
<option value="-0" {if $dropdown_value==0}SELECTED{/if}>0</option>
<option value="5" {if $dropdown_value==5}SELECTED{/if}>5</option>
<option value="10" {if $dropdown_value==10}SELECTED{/if}>10</option>
</select>
</div>
Figure: Numeric range search with custom dropdown for input values

As of version 6.2, Sugar does not enable upgrade safe customization of adding additional operators to
drop-down lists (for example, This Quarter, Last Quarter, Next Quarter).
Follow the steps listed below to add additional operators:

1.

Customize the drop-down array lists in the global language file(s):
date_range_search_dom for dates and
numeric_range_search_dom for numbers.
For example, to add a First Quarter operator, add the following to the file custom/include/
language/en_us.lang.php:
$app_list_strings['date_range_search_dom'] =
array(
'=' => 'Equals',
'not_equal' => 'Not On',
'greater_than' => 'After',
'less_than' => 'Before',
'last_7_days' => 'Last 7 Days',
'next_7_days' => 'Next 7 Days',
'last_30_days' => 'Last 30 Days',
'next_30_days' => 'Next 30 Days',
'last_month' => 'Last Month',
'this_month' => 'This Month',
'next_month' => 'Next Month',
'first_quarter' => 'First Quarter', //Added "First Quarter" operator
'last_year' => 'Last Year',

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 181

'this_year' => 'This Year',
'next_year' => 'Next Year',
'between' => 'Is Between',
);

The drop-down list of operators for date range searches should now have a First Quarter choice.
Selecting First Quarter creates a macro field. In this example, actual value submitted to the
SearchForm code is [first_quarter]. This is because the key is defined as first_quarter.

2.

Alter the include/MVC/View/views/view.list.php.
This step is not upgrade safe, but necessary since there are a lot of files that reference this
file. The code to change is in the prepareSearchForm function.
Load your custom SearchForm2.php implementation (say custom/include/
SearchForm/SearchForm2.php) instead of include/SearchForm/SearchForm2.php,

function prepareSearchForm() {
...
$this->use_old_search = false;
require_once('custom/include/SearchForm/SearchForm2.php');
...}

3. Write the code to handle your custom operator in the generateSearchWhere method of
SearchForm2.php.

a. Locate the area in the code that falls between the switch statements to handle
next_30_days and this_year.

b. Insert the custom operator for first_quarter handling here.

In this example, assume first_quarter to be the dates between January 1 and March 31,
inclusive. Also, for brevity, this example covers mysql queries only.
case 'this_quarter':
if ($GLOBALS['db']->dbType == 'mysql') {
//Get the current year
global $timedate;
$current_year = $timedate->getNow(true)->year;
$where .= "{$db_field} >= '{$current_year}-01-01' AND {$db_field} <=
'{$current_year}-03-31'";
}
break;

Tips
This section provides some tips you will find useful in using the new MVC and metadata framework and
to avoid pitfalls that you may run into from the subtle details of the metadata framework that sometimes
cause frustration and confusion. Here are some common scenarios that you may have to address.
Grouping Required Fields Together
To group all required fields together all you need to do is set the config to:

$GLOBALS['sugar_config']['forms']['requireFirst'] = true;
Displaying data on EditViews with a read-only ACL setting

$GLOBALS['sugar_config']['showDetailData'] = true;
The field value specified in metadata does not appear

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 182

This usually happens when the user is attempting to specify a variable name in the module's class
definition, but not in the vardefs.php file. For example, consider the Products module. In the
Products.php class file there is the variable:

var $quote_name;
If you attempt to retrieve the value in your metadata file as follows:

...
array (
'quote_name',
'date_purchased',
)
...

You must also make sure that 'quote_name' is specified in the vardefs.php file:
'quote_name' =>
array (
'name' => 'quote_name',
'type' => 'varchar',
'vname' => 'LBL_QUOTE_NAME',
'source'=>'non-db',
'comment' => 'Quote Name'
)

This is because the metadata framework populates the Smarty variable $fields using the variables listed
in the vardefs.php file. If they are not listed, there is no way for the metadata framework to know for
sure which class variables have been set and are to be used. The metadata framework works in
conjunction with ACL (Access Control Level) checks in the system and these are tied to fields defined in
the vardefs.php file.

The field value specified in metadata does not appear but is in vardefs.php
This may occur if the variable in the module has not been initialized. The metadata framework invokes
the fill_in_additional_detail_fields() method so be sure the values are either set in the constructor or in
the fill_in_additional_detail_fields() method.
A good strategy to debug the Smarty templates that are generated via the metadata files is to check the
cache/modules/<module> directory for the .tpl files (DetailView.tpl, EditView.tpl, etc.). Enable the
Developer Mode setting under the Advanced panel found through the Admin ->System Settings link to
allow for the Smarty templates to be regenerated on every request.
Global Search
Custom modules have default settings for fields against which global searches can be run. The following
table lists the object type and the fields that the global search queries. This means that custom modules
built using the object type will automatically inherit default global search support for certain fields.

Object Global Search Field(s) Notes

Basic name

Company

name, phone_fax,
phone_office,
phone_alternate,
email_addresses

File document_name

Issue *number, name
The *number column is
prefixed by the package
and module name (ex:

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 183

custom Issue module
named MyIssue in package
abc will have column
named
abc_myissue_number)

Person

first_name, last_name,
phone_home, phone_mobile,
phone_work, phone_other,
phone_fax, assistant,
assistant_phone,
email_addresses

Sale name

In addition, global search on other fields can be enabled with a few upgrade safe customizations. This
applies to custom modules created and deployed prior to 6.2. Follow the steps listed below to enable
global search on fields along with upgrade safe customizations:

1. Create or edit the file custom/Extension/modules/YOUR_CUSTOM_MODULE/Ext/Vardefs/
vardefs.php

2.

Add the unified_search attributes to the fields you wish to run global search on:
$dictionary['YOUR_CUSTOM_MODULE']['unified_search'] = true;
$dictionary['YOUR_CUSTOM_MODULE']['unified_search_default_enabled'] = true;
$dictionary['YOUR_CUSTOM_MODULE']['fields']['NAME_OF_FIELD_TO_SEARCH']['unified_search']
= true;

3. Create or edit the file
custom/modules/YOUR_CUSTOM_MODULE/metadata/SearchFields.php.

4.
Copy the modules/YOUR_CUSTOM_MODULE/metadata/SearchFields.php file into the custom/
modules/YOUR_CUSTOM_MODULE/metadata directory. Add your field to the search
definitions:

‘NAME_OF_FIELD_TO_SEARCH’ => array(‘query_type’=>’default’)
In most cases, the array(‘query_type’=>’default’) entry should suffice. For more complex search
operations involving related tables, etc., consult developer/forum posts on customizing search fields. For
example:
http://www.eontek.rs/sugarcrm/customize-search-fields-and-add-new-ones-in-sugarcrm

5.
Run Admin->Repair or manually remove the file cache/modules/
unified_search_modules.php. The next time you run a global search, the file will be rebuilt
using the new customization settings.

6. Go to Admin->Global Search and drag the custom module you have added to the global
search file into the Enabled Modules list.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 184

7.

Run a global search and if the module still does not appear in the results, click on the Show
All button to verify if the module’s search results have been configured for display. If not,
drag the module into the Enabled Modules list and click the Search button to save your
settings and run the global search again.

Creating New Sugar Dashlets
A Module View is the simplest Sugar Dashlet to create. This is a customizable ListView of a Sugar
Dashlet. For this section we will use the MyAccountsDashlet as an example.
MyAccountsDashlet.php:
// include the base class
require_once('include/Dashlets/DashletGeneric.php');
// required for a seed bean
require_once('modules/Accounts/Account.php');

class MyAccountsDashlet extends DashletGeneric {
// takes an $id, and $def that contains the options/title/etc.
function MyAccountsDashlet($id, $def = null) {
require_once('MyAccountsDashlet.data.php');
parent::DashletGeneric($id, $def);
global $current_user, $app_strings;
$this->searchFields =
$DashletData['MyAccountsDashlet']['searchFields'];
$this->columns =
$DashletData['MyAccountsDashlet']['columns'];
// define a default title
if(empty($def['title'])) $this->title = ‘My Account Dashlet’;
$this->seedBean = new Account();
}
}
All the metadata for this Sugar Dashlet is defined in the constructor. $searchFields are the search
inputs that can be applied to the view. Defining these here will tell which input fields to generate
corresponding filters when the user configures the Sugar Dashlet. $columns define the available
columns to the user. These contain the visible columns and the columns the user can make visible.
Both columns and searchFields are defined in MyAccountsDashlet.data.php so that Studio can modify
them easily.
A seed bean is also required.
MyAccountsDashlet.data.php:
$DashletData['MyAccountsDashlet']['searchFields'] =
array('date_entered' => array('default' => ''));

$DashletData['MyAccountsDashlet']['columns'] = array(
'name' => array(
'width' => '40',
'label' => ‘LBL_LIST_ACCOUNT_NAME’,
'link' => true, // is the column clickable
'default' => true // is this column displayed by default
),
'billing_address_state' => array(
'width' => '8',
'label' => 'LBL_BILLING_ADDRESS_STATE’)
);
This file along with the MyAccountsDashlet.meta.php file is enough to create a generic module view
Sugar Dashlet (see below).

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 185

Custom Sugar Dashlets
Sugar Dashlets are more than generic module views. They can provide unlimited functionality and
integration.
For this section we will use the JotPad Sugar Dashlet as an example. The JotPad is a simple note taking
Sugar Dashlet. A user double clicks on the Sugar Dashlet and can enter any text in the Sugar Dashlet.
When the user clicks outside of the textarea, the text is automatically saved via AJAX.
There are six files that define this Sugar Dashlet

1. JotPadDashlet.php – JotPad Class

2. JotPadDashlet.meta.php – metadata about the Sugar Dashlet

3. JotPadDashlet.tpl – Display Template

4. JotPadDashletOptions.tpl – Configuration template

5. JotPadDashletScript.tpl - Javascript

6. JotPadDashlet.en_us.lang.php – English Language file

JotPadDashlet.php:
// this extends Dashlet instead of DashletGeneric

class Dashlet extends Dashlet {
var $savedText; // users's saved text
var $height = '100'; // height of the pad

function JotPadDashlet($id, $def) {
$this->loadLanguage('JotPadDashlet'); // load the language strings

// load default text is none is defined
if(!empty($def['savedText']))
$this->savedText = $def['savedText'];
else
$this->savedText = $this->DashletStrings['LBL_DEFAULT_TEXT'];
// set a default height if none is set
if(!empty($def['height']))
$this->height = $def['height'];

// call parent constructor
parent::Dashlet($id);
// Dashlet is configurable
$this->isConfigurable = true;
// Dashlet has JavaScript attached to it
$this->hasScript = true;
// if no custom title, use default
if(empty($def['title']))
$this->title = $this->DashletStrings['LBL_TITLE'];
else
$this->title = $def['title'];

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 186

}

// Displays the Dashlet
function display() {}
// Displays the JavaScript for the Dashlet
function displayScript() {}
// Displays the configuration form for the Dashlet
function displayOptions() {}

// called to filter out $_REQUEST object when the
// user submits the configure dropdown
function saveOptions($req) {}

// Used to save text on textarea blur.
// Accessed via Home/CallMethodDashlet.php
function saveText() {}
}

JotPadDashletOptions.tpl:
<form name='configure_{$id}' action="index.php" method="post" onSubmit='return
SUGAR.Dashlets.postForm("configure_{$id}", SUGAR.sugarHome.uncoverPage);'>
The important thing to note here is the onSubmit. All configure forms should have this statement to
uncover the page to remove the configuration dialog.
NOTE: It is important to separate your JavaScript into a separate JavaScript file. This is because Sugar
Dashlets are dynamically added to a page through AJAX. The HTML included into JavaScript is not
evaluated when dynamically included.
It is important that all JavaScript functions are included in this script file. Inline JavaScript (<a href
onclick=’’ etc) will still function. If the Sugar Dashlet has JavaScript and a user dynamically adds it to the
page, the Sugar Dashlet will not be accessible until after the user reloads the page.
Therefore it is beneficial to use as many generic methods in Dashlet.js as possible (Dashlets.callMethod()
specifically!).
JotPadDashletScripts.tpl:

{literal}<script>
// since the Dashlet can be included multiple times a page,
// don't redefine these functions
if(typeof JotPad == 'undefined') {
JotPad = function() {
return {
blur: function(ta, id) {}, // called when textarea is blurred
edit: function(divObj, id) {}, // called when textarea is dbl clicked
saved: function(data) {}, // callback for saving
}();
}
</script>{/literal}

Please refer to the file for more detail comments.
Packaging Custom Sugar Dashlets
To make a Sugar Dashlet Module installable, you will need to package with the following also included in
the manifest.php files.

$installdefs = array('id'=> 'jotpad', 'Dashlets'=> array(array('name' => 'JotPad', 'from' =>
'<basepath>/JotPad',),),);

Refreshing the Sugar Dashlet Cache
To add a Sugar Dashlet to your SugarCRM installation, you can use the Module Loader to install your
Sugar Dashlet Package. However, for development purposes, to make the Sugar Dashlet available to add

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 187

to the home page you will need to run the Repair Sugar Dashlet Link in the Admin Repair Panel at least
once after you have created the Dashlet.
This will rebuild the cache file /<cache dir>/Dashlets/Dashlets.php by scanning the folders /modules/
and /custom/modules/ for Dashlet Files.
Creating Custom Chart Dashlets
Creating a custom chart dashlet is very similar to creating the MyAccountsDashlet described above. The
main difference is that you will need to override the display() method in your class to build the chart,
using the SugarChartFactory class included with SugarCRM. Beginning in SugarCRM 6.2, we have
switched the charts to be rendered through JavaScript. The SugarChartFactory returns a subclass of
SugarChart. See below for an example of display() method as used in the Outcome by Month dashlet..

public function display()
{
$currency_symbol = $GLOBALS['sugar_config']['default_currency_symbol'];
if ($GLOBALS['current_user']->getPreference('currency')){
require_once('modules/Currencies/Currency.php');
$currency = new Currency();
$currency->retrieve($GLOBALS['current_user']->getPreference('currency'));
$currency_symbol = $currency->symbol;
}

require("modules/Charts/chartdefs.php");
$chartDef = $chartDefs['outcome_by_month'];
require_once(‘include/SugarCharts/SugarChartFactory.php’);
$sugarChart = SugarChartFactory::getInstance();
$sugarChart->setProperties('',
translate('LBL_OPP_SIZE', 'Charts') . ' ' . $currency_symbol . '1'.translate('LBL_OPP_THOUSANDS',
'Charts'),
$chartDef['chartType']);
$sugarChart->base_url = $chartDef['base_url'];
$sugarChart->group_by = $chartDef['groupBy'];
$sugarChart->url_params = array();
$sugarChart->getData($this->constructQuery());
$xmlFile = $sugarChart->getXMLFileName($this->id);
$sugarChart->saveXMLFile($xmlFile, $sugarChart->generateXML());
return $this->getTitle('<div align="center"></div>') .
'<div align="center">' . $sugarChart->display($this->id, $xmlFile, '100%', '480', false) . '</div>
';
}

protected function constructQuery()
{
$query = "SELECT sales_stage,".
db_convert('opportunities.date_closed','date_format',array("'%Y-%m'"),array("'YYYY-MM'"))." as m,
".
"sum(amount_usdollar/1000) as total, count(*) as opp_count FROM opportunities ";
$query .= " WHERE opportunities.date_closed >= ".db_convert("'".$this-
>obm_date_start."'",'datetime') .
" AND opportunities.date_closed <= ".db_convert("'".$this->obm_date_end."'",'datetime') .
" AND opportunities.deleted=0";
if (count($this->obm_ids) > 0)
$query .= " AND opportunities.assigned_user_id IN ('" . implode("','",$this->obm_ids) . "')";
$query .= " GROUP BY sales_stage,".

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 188

db_convert('opportunities.date_closed','date_format',array("'%Y-%m'"),array("'YYYY-MM'")) . "
ORDER BY m";
return $query;
}

Custom Charts
To create custom charts in SugarCRM you need to create a SugarChart subclass that will be returned
from the SugarChartFactory. When charts are rendered in the system, a call is made to the static
getInstance method of SugarChartFactory. The getInstance method accepts two parameters- a String
name of the chart engine and an optional String name of a module. The chart engine value is retrieved
from the Sugar configuration settings. The optional module name supports modules that require
additional data processing and rendering. SugarCRM comes with a JitReport class specifically to handle
the nuances of rendering charts for the Reports module.
In the following example, we highlight how to change the formatting of the chart to move the legend to
the top of the chart (by default, it is rendered on the bottom of the chart).
The first step is to create two folders: <sugar root>/custom/include/SugarCharts/CustomJit and <sugar
root>/custom/include/SugarCharts/tpls. In the CustomJit folder, create two PHP files: CustomJit.php and
CustomJitReports.php.
In our trivial example, we will simple override the display method for both classes to point to our new
custom template so that we may move the legend to the top of the chart.
See below for code for CustomJit.php file:
<?php
require_once("include/SugarCharts/Jit/Jit.php");

class CustomJit extends Jit
{

function display($name, $xmlFile, $width='320', $height='480', $resize=false) {
parent::display($name, $xmlFile, $width, $height, $resize);
return $this->ss->fetch('custom/include/SugarCharts/CustomJit/tpls/chart.tpl');
}
}
?>
See below for code for code for CustomJitReports.php file:
<?
require_once("include/SugarCharts/Jit/JitReports.php");

class CustomJitReports extends JitReports
{

function display($name, $xmlFile, $width='320', $height='480', $resize=false) {
parent::display($name, $xmlFile, $width, $height, $resize);
return $this->ss->fetch('custom/include/SugarCharts/CustomJit/tpls/chart.tpl');
}
}

?>
Copy over the file include/SugarCharts/Jit/tpls/chart.tpl to the <sugar_root>/custom/include/
SugarCharts/CustomJit/tpls directory. We will change the Smarty code that outputs the legend to be
moved to the top. Here’s the snipped-off code changed from chart.tpl:
<div class="chartContainer">
<div id="sb{$chartId}" class="scrollBars">
<div id="legend{$chartId}" class="legend"></div>
<div id="{$chartId}" class="chartCanvas" style="width: {$width}; height: {$height}px;"></div>
</div>

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 189

</div>
Finally, all that’s left is to change your configuration file settings so that the chartEngine value is
CustomJit. The next time you render a chart with a legend, the legend will appear at the top of the chart.
Themes
The goal of the Themes framework is to reduce the complexity of the current themes and the amount of
work needed to create new themes in the product. The framework also provides tools for easily changing
a theme in an upgrade-safe way without modifing the theme directly. This is all possible through an
inheritance mechanism that is part of the framework, where themes can build upon other themes to
build the user interface for the application. This directly reduces the duplication of code in the
application, and enables new UI elements to be supported more easily in any theme.
Theme Directory Structure
The theme directory has a more formal structure to it, which must be followed in order for the
inheritance mechanism in the themes framework to work correctly. It is as follows:
themes/
<theme name>/
themedef.php
css/ // all css files go here
style.css
print.css
images/ // all images go here
js/ // all js files go here
The themedef.php file specified also has a specific format to it so that it can be interpreted properly by
the application. It is as follows:
$themedef = array(
'name' => "Sugar", // theme name
'description' => "Sugar", // short description of the theme
'maxTabs' => $max_tabs, // maximum number of tabs shown in the bar
'pngSupport' => true, // true if png image files are used in this theme, false if gifs
'parentTheme' => "ParentTheme", // name of the theme this theme inherits from, if something other
than the default theme.
'barChartColors' => array(....),
'pieChartColors' => array(....),
);
Please note that only the 'name' specification is required; all other elements are optional.
Theme Development

When you are developing a new theme or adding modifications to an existing theme, it is
recommended to turn developer mode on in the 'System Settings' in the 'Admin' section of the
application. This is so that any changes you make will become immediately visible to you, making
testing you changes easier. Once the theme development is complete, it is recommended that you
turn off the Developer Mode.
The theme framework performance is greatly enhanced with the use of an external caching
mechanism such as APC or Memcache. It is highly recommended to have this in place.

Changing a Theme
Modifications to any theme in the application can be made in the custom/themes/ directory under the
theme in question. For example, to replace the default Accounts.gif image in the Sugar theme, drop
the new.gif image file into the custom/themes/<theme name>/images/ directory. You can do the
same for CSS and JS files; in these cases the given files will be appended to the existing ones instead
of being used in place of them.
The order in which directories are searched for overriding images/css/js files is as follows:
1. custom/themes/<theme name>/
2. themes/<theme name>/
3. any parent themes (custom directory first, then regular one)
4. custom/themes/default/
5. themes/default/

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 190

Creating a New Theme
The easiest way to create a new theme is to find a base themes that you like and base your design
on it. This reduces the amount of CSS work you'll have to do on your own, and you can rest assured
that any theme fixes will also be fixed in your theme, thanks to inheritance. To do this, you'll need to
create a themedef.php file with the following specifications in it:
$themedef = array(
'name' => "MySugar", // theme name
'description' => "Sugar theme for me", // optional, short description of the theme
'parentTheme' => "Sugar", // name of the theme this theme inherits from, in this case the Sugar
theme
);
You can now add any CSS, images, and/or JS code to their respective directories to make the needed
alterations to the parent theme to create the desired theme. It is by no means a requirement to
derive a theme from one of the existing ones in the product; if you do not specify the 'parentTheme'
attribute above, then the theme settings in the themes/default/ directory will be used.

Element Reference Guide
Below is a guide of the various id elements and classes that are used in the application. IDs are
indicated below where they are prefixed by a # sign (i.e. #dog for the ID dog), and classes are
specified by a '.' (.cat for class cat).

.edit EditView containers

.detail DetailView containers

.list ListView containers

.view Styles for any of the detail, edit. list, and
search view containers

.search Search container

The below figure illustrates the where the main UI div elements are located and what their IDs are.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 191

Packaging Custom Themes
The Upgrade Wizard, accessible through the Admin screen, allows you to apply themes without unzipping
the files manually. The theme is also actually added to the “Theme” dropdown on the Sugar Login
screen.
The Upgrade Wizard relies on a file named manifest.php, which should reside alongside the root directory
of your theme ZIP file.
The following section outlines the format of the manifest file. An example manifest file can be found in
the following section.

o acceptable_sugar_flavors Contains which Sugar editions the package can be installed
on. Accepted values are any combination of: CE, PRO, CORP, ENT, and ULT.

o acceptable_sugar_versions This directive contains two arrays:

o exact_matches: each element in this array should be one exact version string, i.e.
“6.0.0b” or “6.1.0”

o regex_matches: each element in this array should be one regular expression
designed to match a group of versions, i.e. “6\\.1\\.0[a-z]”

o author Contains the author of the package; for example, “SugarCRM Inc.”

o copy_files An array detailing the source and destination of files that should be copied
during installation of the package. See the example manifest file below for details.

o description A description of the package. Displayed during installation.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 192

o
icon A path (within the package ZIP file) to an icon image that will be displayed during
installation. Examples include “./patch_directory/icon.gif” and “./patch_directory/images/
theme.gif”

o is_uninstallable Setting this directive to TRUE allows the Sugar administrator to
uninstall the package. Setting this directive to FALSE disables the uninstall feature.

o name The name of the package. Displayed during installation.

o published_date The date the package was published. Displayed during installation.

o type The package type. This should be set to “theme”

o version The version of the patch, i.e. “1.0” or “0.96-pre1”

Example Theme Manifest File
The following is an example manifest.php file:

<?php
$manifest = array (
'acceptable_sugar_versions' =>
array (
'exact_matches' =>
array (
),
'regex_matches' =>
array (
0 => '3.5.[01][a-z]?'
),
),
'acceptable_sugar_flavors' =>
array (
0 => 'OS',
1 => 'PRO',
2 => 'ENT',
),
'name' => 'Theme Name',
'description' => 'Theme Description’,
'author' => 'SugarCRM Inc.',
'published_date' => '2005-09-15 16:00:00',
'version' => '3.5.1',
'type' => 'theme',
'is_uninstallable' => TRUE,
'icon' => 'ThemeName/images/Themes.gif',
'copy_files' =>
array (
'from_dir' => 'ThemeName',
'to_dir' => 'themes/ThemeName',
'force_copy' =>
array (

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 193

),
),
); ?>

Example File Structure: The following is an example of the file structure of the GoldenGate theme:
ThemeName.zip
| manifest.php | \---ThemeName
| config.php
| cookie.js
| footer.php
| <more files>
|
\---images
accept_inline.gif
AccountReports.gif
Accounts.gif
<more images>

You’ll need to create a root directory that contains the theme directory. The name of this root directory
(ThemeName) is what should be used in the from_dir element of the copy_files array in manifest.php.
You’ll also need to place your manifest.php alongside this root directory. Create a ZIP file containing the
root directory and the manifest.php file at the top level. Now your language pack is ready to be installed
with the Upgrade Wizard.
Tips
Pick your Canvas
Think about how you want the general look and feel of your theme, and see which out-of-the-box
existing Sugar theme best fits. This will reduce any extra work that may come out of rearranging the
layout because you chose the first theme you saw.
Replace All
When changing colors in the css files, do a “replace all” on the file. For example, if you are changing the
color ‘#FF0000’ to ‘#CC0000’, change all instances of ‘#FF0000’ to ‘#CC0000’. Eventually you will get to
a point where you may want your changes to only affect one class, and may have to go back and refine
some of the mass changes. However doing this initially will usually yield favorable results, and save you
some time.
Check your work
So you have all your css laid out and your home page looks good? Did you check your Edit and List
views? Did you check the calendar popup widgets (from date fields)? Often, developers forget to check
the css for Sugar Dashlets, reports and charts. Do not forget to do a thorough check, and keep in mind
that you may have to tweak with navigation.css, layout_utils.php, and sugarColors.xml files before being
finally done.
Personalize your theme
Remember this is your theme now. If you want to add a new div, or introduce a new class, you do not
have to make it fit within the confines of the theme with which you started. Most of the images are
transparent and work fine, but changing the look and feel of those would add an extra degree of
customization. So, go ahead and add your flash intro, embedded mp3 or Star Wars Background.
Adding Multiple Languages
Sugar as an application platform is internationalized and localizable. Data is stored and presented in the
UTF8 codepage allowing for all character sets to be used. Sugar provides a language pack framework
allowing developers to build support for any language to be used in the display of user interface labels.
Adding a language is a simple process. Two solutions exist to add your own language to SugarCRM.
When you add a new language, you must choose a language prefix. While you can choose any key value
you want, we recommend following the standard locale naming convention. For example, en_en for
English, en_us for US English, ge_ge for German or ge_ch for Swiss German. This key value will be the
prefix for all of your new language files.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 194

Add a Language
You can add a new language directly to Sugar without using a Language Pack.
Follow the steps outlined below:

1.
Add the new language you are creating to the $languages variable in the config.php file. For
instance, to add Spanish, first modify the config.php file in the root of your Sugar installation
to reference the new language pack.

$sugar_config[`languages`] = array('en_us'=>'US English','es_es'=>'Espanol’);

Note: You can also set the default language in the config.php. This value is used if a user does
not specify a language while logging into the application.

2. Cut and paste each of the en_us.lang.php string files that ship with Sugar Open Source into
a new file (<new>.lang.php) with the new prefix you set in the step above.

There are two general locations where you will need to create the new language files:

o include/language/<new>.lang.php - This file contains the strings common across the
entire application. This file must exist for each language defined in config.php.

o modules/<some_module>/language/<new>.lang.php - These files contain the strings
specific to each module.

Note: Some language files that ship with Sugar are not named “en_us.lang.php” but are
“.html” or “.tpl” files. These files are used for the inline help system. A complete language
pack will include the translated versions of these files as well.

3.

After you create your new files by cutting and pasting the en_us.lang.php files, open each
file and translate the strings from English. The strings are defined inside of global arrays and
the array syntax does need to be maintained for everything to work. A common problem you
will quickly see if the array syntax is off is that the user interface doesn't display at all (just a
blank page).

Note: In the include/language/<new>.lang.php file, you will see that there are two global arrays
defined. The $app_list_strings array is actually an array of arrays. The key values in this array must
not be changed. There are comments and examples in the code that should keep you on track.

Creating Language Packs
A Language Pack is a compressed file loadable through Module Loader. It is the best solution to add a
language to SugarCRM. Indeed, it is easier to maintain and to port to other instances of SugarCRM. By
default, the Help link in the Sugar application points to the Sugar Application Guide. If you want the Help
link in Sugar to point to localized Help content in a language other than English, you can include your
localized inline Help files in the language pack.
There are different ways to create a Language Pack:

• You can build a Language Pack using one of the tools available on SugarForge like
“SugarCRM Translation Module” or “Sugar Translation Suite”.

• You can create it using an existing Language Pack:

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 195

o Download an existing Language Pack.

Note: Be careful to choose a language pack that is up to date and is working.

o Uncompress it and be careful to keep the folder architecture.

o

Rename all the files with a name starting with the language prefix (for example
“es_es” if you downloaded the Spanish Language Pack) by replacing the old prefix
(“es_es”) with the prefix of your new language. Be careful to not modify the
manifest.php file and the name of the folders.

o

Open each file that you have renamed and translate the strings from English. The
strings are defined inside of global arrays, and the array syntax does need to be
maintained for everything to work. A common problem you will see if the array
syntax is off is that the user interface does not display at all (just a blank page).

o

Optionally, include localized Help files for each view in each module. For example, for
the Portugese (Brazilian) language pack, you would include pt_br.help.index.html
(for List View), pt_br.help.DetailView.html (for Detail View), and
pt_br.help.EditView.html (for Edit View).

o Modify the manifest.php file based on the file changes you made.

o Compress back everything in a zip file.

o You can now load this Language Pack using Module Loader.

• You can create it from the start to finish:

o Follow the steps of “Add a Language” above.

o After you ensure that it works on your test instance, package it to be installed.

o

Module Loader allows you to apply language packs without needing to add the
language to the $languages array in config.php. The Module Loader relies on a file
named manifest.php, which should reside alongside the root directory of your
language pack ZIP file.

The following is an example manifest.php file, for the Portugese (Brazilian) language pack:
<?php
$manifest = array (
'acceptable_sugar_versions' =>
array (
'exact_matches' =>
array (
),

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 196

'regex_matches' =>
array (
0 => '5\.0\.0[a-z]?'
),
),
'acceptable_sugar_flavors' =>
array (
0 => 'CE',
1 => 'PRO',
2 => 'ENT',
),
'name' => 'Portugese (Brazilian) language pack',
'description' => 'Portugese (Brazilian) language pack',
'author' => 'Your name here!',
'published_date' => '2008-07-29 22:50:00',
'version' => '5.0.0',
'type' => 'langpack',
'icon' => '',
'is_uninstallable' => TRUE,
),
$installdefs = array(
'id' => 'pt_br',
'copy' => array(
array(
'from' => '<basepath>/modules',
'to' => 'modules',
),
array(
'from' => '<basepath>/include/language'),
'to' => 'include/language'
),
array(
'from' => '<basepath>/install/language',
'to' => 'install/language',
),
),
);

?>
The following is an example of the file structure of the Portugese (Brazilian) language pack:

SugarEnt-5.0.0-lang-pt_br-2008-07-29.zip
|

manifest.php
|
|___ include
| |___language
| pt_br.lang.php
|
|___ modules
|
|___ Accounts
| |
| |___ language
| pt_br.lang.php

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 197

|
|___ Activities
| |___ language
| pt_br.lang.php
|
|___ <other module directories>

You will need to create a root directory that contains the ./include/ and ./modules/ directories of the
language pack.
The name of this root directory (i.e. pt_br_500) is what should be used in the from_dir element of the
copy_files array in manifest.php. You will also need to place your manifest.php alongside this root
directory.
Then you must copy all the language files that you created as described in “Add a Language” into these
directories. Be careful to keep the same directory structure (for examples if the file was in modules/
Accounts/language copy/paste it in pt_br_500/modules/Accounts/language).
Create a Zip file containing the root directory and the manifest.php file at the top level. Now your
language pack is ready to be installed with the Module Loader.
Creating a Connector
This section describes how to write a connector that can be installed through the Module Loader.

1. Create project directory and files.

The first step is to create a project directory for your connector. We can call this connector "test"
for now and create a directory called "test". Under the "test" directory, also create a sub-directory
called "source" and then under the "source" directory, create another sub-directory "language".
The "source" directory will contain your connector's code. The minimal files a connector should
provide are a config file (config.php), a variable definition file (vardefs.php) and a connector
source file (test.php in this case). An optional default mapping file that associates your
connector's fields with fields in Sugar's modules may be provided (mapping.php). Your directory
should look like this:

test
test/source
test/source/test.php
test/source/vardefs.php
test/source/config.php
test/source/mapping.php (optional)

test/language
test/language/en_us.lang.php (default English language file for localization)

2. Create the vardefs.php file.

The next step is to provide a list of variable definitions that your connector uses. These should be
the fields that your connector uses. For example, if your connector is a person lookup service,
then these fields may be a first and last name, email address and phone number. You must also
provide a unique field identifier for each connector record. This unique field needs to be named
"id". Each vardef field entry is a defined within a PHP Array variable. The syntax is similar to a
Sugar module's vardefs.php file with the exception of the 'hidden', 'input', 'search', 'hover' and
'options' keys.
The 'hidden' key/value parameter is used to hide the connector's field in the framework. The
required "id" field should be declared hidden because this is a unique record identifier that is used
internally by the connector framework.
The 'input' key/value parameter is an optional entry to provide an input argument name
conversion. In other words, if your connector service expects a "firstName" argument but your

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 198

connector's field is named "firstname", you may provide an additional input entry so that the
connector framework will call your connector's getItem() and getList() methods with an argument
named "firstName". Typically, the 'input' key/value parameter is used to support searching.

'lastname' => array (
'name' => 'lastname',
'vname' => 'LBL_LAST_NAME',
'input' => 'lastName',
'search' => true,
'hover' => 'true',
),
Although the benefit of this is probably not captured well in this example, you could potentially
have a service that groups arguments in a nested array. For example imagine the following
array of arguments for a connector service:
$args['name']['first']
$args['name']['last']
$args['phone']['mobile']
$args['phone']['office']
Here we have an array with 'name' and 'phone' indexes in the first level. If your connector
expects arguments in this format then you may supply an input key/value entry in your
vardefs.php file to do this conversion. The input key value should be delimited with a period (.).
'lastname' => array (
'name' => 'lastname',
'vname' => 'LBL_LAST_NAME',
'input' => 'name.last', // Creates Array argument ['name']['last']
'search' => true,
'hover' => 'true',
),

The 'search' key/value parameter is an optional entry used to specify which connector field(s) are
searchable. In step 1 of the connector wizard screen, a search form will be generated for your
connector so that the user may optionally refine the list of results shown. Currently, we do not filter
the fields that may be added to the search form so the use of the 'search' key/value parameter
serves more as a visual indication.
The 'hover' key/value parameter is an optional entry to support the hover functionality. A vardef
field that is denoted as the hover field contains the value the hover code will use in displaying a
popup that displays additional detail in the Detail Views.
The 'options' key/value parameter allows the developer to map values returned by the connector to
values that may be used by the Sugar database. In our example, the state field returns the
abbreviated value of the State (CA for California, HI for Hawaii, etc.). If we wish to use the State
name instead of the abbreviated name, we may specify the 'options' key/value parameter and then
add the mapping entry (mentioned in step 9) to enable this translation. This is especially helpful
should your system depend on a predefined set of values that differ from those returned by the
connector. Here is a complete example of our "test" connector’s vardefs.php file:
<?php
$dictionary['ext_rest_test'] = array(
'comment' => 'A test connector',
'fields' => array (
'id' => array (
'name' => 'id',
'vname' => 'LBL_ID',
'hidden' => true,
),
'firstname' => array (
'name' => 'firstname',
'vname' => 'LBL_FIRST_NAME',

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 199

),
'lastname'=> array(
'name' => 'lastname',
'vname' => 'LBL_LAST_NAME',
'input' => 'name.last',
'search' => true,
),
'website'=> array(
'name' => 'website',
'vname' => 'LBL_WEBSITE',
'hover' => true,
),
'state'=> array(
'name' => 'state',
'vname' => 'LBL_STATE',
'options' => 'states_dom',
),
)
);
?>

3. Create the config.php file.

The config.php file holds a PHP array with two keys. The "name" is used to provide a naming label
for your connector that will appear in the tabs throughout the application. The "properties" key
may be used to store runtime properties for your connector. Here we have simply provided the
name "Test" and a properties value that we may use to control the maximum number of results
we return in our connector.
<?php
$config = array (
'name' => 'Test',
'properties' =>
array (
'max_results' => 50,
),
);
?>

4. Create the Language file contents.

The next step is to create a language file with labels for your application. Notice that the
properties defined in the config.php file are indexed by the property key ("max_results").
Otherwise, the vardefs.php entries should be indexed off the "vname" values.
<?php
$connector_strings = array (
//vardef labels
'LBL_FIRST_NAME' => 'First Name',
'LBL_LAST_NAME' => 'Last Name',
'LBL_WEBSITE' => 'Website',
'LBL_STATE' => 'State',
//Configuration labels
'max_results' => 'Maximum Number of Results',
);
?>

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 200

5. Determine the connector protocol type.

The second step is to determine the connector protocol type to create the connector source file.
Currently the two Web Services protocols supported are REST and SOAP. If the web service is a
REST protocol, then the connector should extend the ext_rest class defined in the file include/
connectors/sources/ext/rest/rest.php. If the web service is a SOAP protocol, then the connector
should extend the ext_soap class defined in the file include/connectors/sources/ext/soap/
soap.php. In this example, we will extend the ext_rest class. The class name should contain the
"ext_rest_" suffix if it is a REST protocol connector or "ext_soap_" if it is a SOAP protocol
connector.
<?php
require_once('include/connectors/sources/ext/rest/rest.php');
class ext_rest_test extends ext_rest {

}
?>

6. Provide implementations for the getItem() and getList() Methods.

There are two methods that a connector must override and provide an implementation for. These
are the getItem() and getList() methods. These two methods are called by the component class
(include/connectors/component.php). The getList() method as its name suggests, returns a list of
results for a given set of search criteria that your connector can handle. On the other hand, the
getItem() method should attempt to return a single connector record. For example, if your
connector is a person lookup service, the getList() method may return matching person values
based on a first and last name search. The getItem() method should return values for a unique
person. Your service may uniquely identify a person based on an internal id or perhaps an email
address.
The getList() method accepts two arguments. $args is an Array of argument values and $module
is a String value of the module that the connector framework is interacting with. The getList()
method should return a multi-dimensional Array with each record's unique id as the key. The
value should be another Array of key/value pairs where the keys are the field names as defined in
the vardefs.php file.
public function getList($args=array(), $module=null) {

$results = array();

if(!empty($args['name']['last']) && strtolower($args['name']['last']) == 'doe') {
$results[1] = array('id'=>1, 'firstname'=>'John', 'lastname'=>'Doe',
'website'=>'www.johndoe.com', 'state'=>'CA');
$results[2] = array('id'=>1, 'firstname'=>'Jane', 'lastname'=>'Doe',
'website'=>'www.janedoe.com', 'state'=>'HI');
}

return $results;

}
The getItem() method also accepts two arguments. $args is an Array of argument values and
$module is a String value of the module that the connector framework is interacting with. The
getItem() method will be called with a unique id as defined in the getList() method's results.
public function getItem($args=array(), $module=null) {
$result = null;
if($args['id'] == 1) {

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 201

$result = array();
$result['id'] = '1'; //Unique record identifier
$result['firstname'] = 'John';
$result['lastname'] = 'Doe';
$result['website'] = 'http://www.johndoe.com';
$result['state'] = 'CA';
} else if($args['id'] == 2) {
$result = array();
$result['id'] = '2'; //Unique record identifier
$result['firstname'] = 'Jane';
$result['lastname'] = 'Doe';
$result['website'] = 'http://www.janedoe.com';
$result['state'] = 'HI';
}
return $result;
}

7.

Provide optional testing functionality This is an optional step where you may wish to provide
functionality for your connector so that it may be tested through the administration interface
under the "Set Connector Properties" section. To enable testing for your connector, set the
connector class variable _has_testing_enabled to true in the constructor and provide a test ()
method implementation.

public function __construct(){
parent::__construct();
$this->_has_testing_enabled = true;
}

public function test() {
$item = $this->getItem(array('id'=>'1'));
return !empty($item['firstname']) && ($item['firstname'] == 'John');
}

8. Provide optional Hover Link functionality

This is an optional step where you may wish to provide functionality for your connector so that the
DetailView of modules enabled for the connector display a popup with additional information. Depending
on the connector field, this step involves creating some additional PHP and Smarty code. A new directory
needs to be created to contain the hover code.
Create a "formatter" sub-directory under the "Test" connector's root folder. Then add the formatter class
there. We'll also call this file "test.php". Also create a "tpls" sub-directory under the "formatter"
directory. The "tpls" directory may contain an optional icon that will be displayed next to the field in the
DetailView that will activate the hover popup. By default, the connector framework uses the icon in
themes/default/images/icon_Connectors.gif. The default.tpl file is the Smarty template file that will be
activated when the hover icon is launched. Your directory structure should now appear as:

test

test/source
test/source/test.php
test/source/vardefs.php
test/source/config.php
test/source/mapping.php (optional)

test/language

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 202

test/language/en_us.lang.php (default English language file for localization)

test/formatter
test/formatter/test.php
test/formatter/tpls/test.gif
test/formatter/tpls/default.tpl

The test.php file should extend default_formatter (include/connectors/formatters/
default/formatter.php) with the same prefix naming convention used for the connector
class "ext_rest_" in this case. Also, place the prefix "_formatter" after the name of the
connector. In our example, we are looking for Sugar module fields that have been
mapped to the website connector field. If a module field displayed in the Detail View has
been mapped to our connector's website field then we will add the code to display the
hover popup.
<?php
class ext_rest_test_formatter extends default_formatter {

public function getDetailViewFormat() {
$mapping = $this->getSourceMapping();
$mapping_name = !empty($mapping['beans'][$this->_module]['website']) ?
$mapping['beans'][$this->_module]['website'] : '';

if(!empty($mapping_name)) {
$this->_ss->assign('mapping_name', $mapping_name);
return $this->fetchSmarty();
}

$GLOBALS['log']-
>error($GLOBALS['app_strings']['ERR_MISSING_MAPPING_ENTRY_FORM_MODULE']);
return '';
}
public function getIconFilePath() {
return 'custom/modules/Connectors/connectors/formatters/ext/rest/test/tpls/test.jpg';
}

}
?>
The default.tpl file should contain the code to display additional information. The connector
framework will trigger a call to the show_ext_rest_[connector name] or
show_ext_soap_[connector_name] methods depending on the connector type (REST or SOAP)
when a mouseover javascript action is detected on the hover field (single icon) or when a
mouseclick javascript action is detected on the hover field (multiple hover links shown in
dropdown menu).

We provide a simple example below, but typically you may wish to have the hover code make additional
calls to retrieve information. For example, you may wish to use an AJAX pattern to make a request back
to the Sugar system that will in turn make a REST call to your connector.

<div style="visibility:hidden;" id="test_popup_div"></div>
<script type="text/javascript">
function show_ext_rest_test(event)
{literal}
{

var xCoordinate = event.clientX;

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 203

var yCoordinate = event.clientY;
var isIE = document.all?true:false;
if(isIE) {
xCoordinate = xCoordinate + document.body.scrollLeft;
yCoordinate = yCoordinate + document.body.scrollTop;
}

{/literal}

cd = new CompanyDetailsDialog("test_popup_div", 'This is a test', xCoordinate, yCoordinate);
cd.setHeader("{$fields..value}");
cd.display();
{literal}
}
{/literal}
</script>

You will now need to set the class variable _enable_in_hover to true in the connector's constructor in
test/source/test.php:
public function __construct(){
parent::__construct();
$this->_has_testing_enabled = true;
$this->_enable_in_hover = true;

}

9. Provide optional mapping.php file.

This is another optional step where you may provide optional mapping entries for select modules in
Sugar. In our vardefs.php file example in step 2, we enabled the hover link for the website field. To
explicitly place this hover link on the website field for the Accounts module we provide the mapping entry
as follows. A mapping.php file is needed though if you use the 'options' attribute for entries in the
vardefs.php file.

<?php
$mapping = array (
'beans' =>
array (
'Accounts' =>
array (
'website' => 'website',
),
),
//options mapping
'options' =>
array (
'states_dom' =>
array(
'CA' => 'California',
'HI' => 'Hawaii',
),
),
);
?>

10. Package your connector.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 204

The final step would be to zip your connector's contents along with a manifest.php file so that it
may be installed by the Module Loader. Place the manifest.php file into folder that includes the
"test" directory. Your zip file should have the following directory structure:
test/source/test.php
test/source/vardefs.php
test/source/config.php
test/source/mapping.php

test/language/en_us.lang.php

test/formatter/test.php
test/formatter/tpls/test.jpg
test/formatter/tpls/default.tpl

../test/manifest.php <--- in the folder that contains the "test" folder
A sample manifest.php file is as follows:
<?php
$manifest = array(
'acceptable_sugar_flavors' => array(
'CE',
'PRO',
'ENT',
),
'acceptable_sugar_versions' => array(
'5.2.0',
),
'is_uninstallable' => true,
'name' => 'Test Connector',
'description' => 'Connector for testing purposes only',
'author' => 'John Doe',
'published_date' => '2008/12/12',
'version' => '1.0',
'type' => 'module',
'icon' => '',
);

$installdefs = array (
'id' => 'ext_rest_test',
'connectors' => array (
array (
'connector' => '<basepath>/test/source',
'formatter' => '<basepath>/test/formatter',
'name' => 'ext_rest_test',
),
),

);

?>
Dynamic Teams
Dynamic Teams provides the ability to assign a record to multiple teams. This provides more flexibility in
sharing data across functional groups.
Database Changes

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 205

The Sugar Professional and Sugar Enterprise versions create four new tables (team_hierarchies,
team_sets, team_sets_modules and team_sets_teams). A description of each table is as follows:

Table Description

team_hierarchies Not used currently, but added to provide future
support for team hierarchies.

team_sets

Each record in this table represents a unique
team combination. For example, each user’s
private team will have a corresponding team
set entry in this table. A team set may also be
comprised of one or more teams.

team_sets_teams

The team_sets_teams table maintains the
relationships to determine which teams belong
to a team set. Each table that previously used
the team_id column to maintain team security
now uses the team_set_id column’s value to
associate the record to team(s).

team_sets_modules

This table is used to manage team sets and
keeps track of which modules have records
that are or were associated to a particular
team set.

In addition to the four new tables, each table that previously used the team_id column to store
the team access information will now have a new team_set_id column to record the team set id
value. This is also true in the case of upgrades from pre-5.5.x versions. However, custom
modules created using the CE editions of the system that go through the flavor conversion to the
PRO/CORP/ENT/ULT editions will not be upgraded to support teams. In such situations, it will still
be the responsibility of the developer to provide the team security feature through Module
Builder.

Team Security
The team_sets_teams table allows the system to check for permissions on multiple teams. The following
diagram illustrates table relationships in SugarBean’s add_team_security_where_clause method.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 206

Using the team_sets_teams table the system will determine which teams are associated with the
team_set_id and then look in the team_memberships table for users that belong to the team(s).
Overview
On every Edit View screen, the user should be presented with a Teams widget which provides the ability
to associate one or more teams to the record. The user can either perform a quick search to associate a
team or they can select one or many teams from the popup. When the record is saved a team_set_id is
associated to the record. A team set is simply a unique combination of teams. Sugar could have
implemented Dynamic Teams as a many-many relationship in the database, but the idea of team sets
takes advantage of combinations of teams that are re-used throughout the system. Rather than
replicated sets of teams each time we create a record, we simply re-use the team_set_id thereby
reducing the amount of duplicated data.
Team Sets
As mentioned above, Sugar implemented this feature not as a many-to-many relationship but as a one-
to-many relationship. On each table that had a ‘team_id’ field we added a ‘team_set_id’ field. We have
also added a ‘team_sets’ table which maintains the team_set_id, a ‘team_sets_teams’ table which
relates a team set to the teams. When performing a team based query we use the ‘team_set_id’ field on
the module table to join to ‘team_sets_teams.team_set_id’ and then join all of the teams associated with
that set. Given the list of teams from team_memberships we can then decide if the user has access to
the record.
Primary Team
The ‘team_id’ is still being used, not only to support backwards compatibility with workflow and reports
but also to provide some additional features. When displaying a list we use the team set to determine
whether the user has access to the record, but when displaying the data, we show the team from team
id in the list. When the user performs a mouse over on that team Sugar performs an Ajax call to display
all of the teams associated with the record. This ‘team_id’ field is designated as the Primary Team
because it is the first team shown in the list, and for sales territory management purposes, can
designate the team that actually owns the record and can report on it.
Adding Teams Programatically

To add teams to a record, you may first load the teams relationship on SugarBean and then pass
in an Array of team ids to the add method.
…
$contact->load_relationship(‘teams’);
$contact->teams->add(array(‘East’, ‘West’));
…

If there are already other teams assigned to this contact, the system will check to see if an entry in the
team_sets table exists for the combination of teams specified. It will create entries in the team_sets and

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 207

team_sets_teams tables if necessary to record the unique combination of teams. In addition, if you have
a team_id value that is not in the list of teams in the set, then it will be added.
An example of the SOAP API to set teams is as follows

…:
//Create nusoapclient
$this->_soapClient = new nusoapclient($soap_url);
//Login
$result = $this->_soapClient->call('login', …);
$session_id = $result['id'];
$this->_soapClient->call('set_relationship',array('session'=>$this-
>_$session_id,'module_name'=>'Contacts', 'module_id'=>$contact_id, 'link_field_name' =>
'teams', 'related_ids' => array('1', 'East', 'West')));
…

It is important to note that when adding teams, additional teams that are not specified programmatically
can be added. This will be the case if a person assigned to a record does not belong to any of the teams
that will be associated with the record. In this scenario, we will add the assigned–to- user’s private team
into the list of teams. If you wish to disable this behavior, you can edit the system’s config.php file and
add the following entry:

‘disable_team_access_check’ => true
Removing Teams Programmatically

Removing teams is pretty simple. As before, you load the Teams relationship:
$contact->load_relationship(‘teams’);
$contact->teams->remove(array(‘team1’, ‘team2’));

One thing to note is that if one of the teams you are removing is the primary team as defined by the
team_id column, then Sugar logs this and prevents the removal of this team. Because Sugar does not
know what to do next if the primary team is removed, we prevent this action.
Replacing Teams Programmatically
As is often the case you may just want to replace all of the teams you have on a record so we have
provided the replace method:

$contact->load_relationship(‘teams’);
$contact->teams->replace(array(‘team1’, ‘team2’));

TeamSetLink
You can define your own Link class. Typically any relationship in a class is handled by the data/
Link.php class. As part of Dynamic Teams, we introduced the ability to provide your own custom Link
class to handle some of the functionality related to managing relationships. The team_security parent
vardefs in SugarObjects contains the following in the ‘teams’ field definition:

…
'link_class' => 'TeamSetLink',
'link_file' => 'modules/Teams/TeamSetLink.php',

The link_class entry defines the class name we are using and the link_file tells us where that class file
is located. This class should extend Link.php and you can then override some of the methods used to
handle relationships such as ‘add’ and ‘delete’.

The Dynamic Teams Widget
The only reason we present the widget here is to outline how each element in this widget is
associated with an element in the system. This widget is rendered in place of the Teams relationship
field. However, the old Teams relationship field will still work.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 208

The Primary radio button will select the team which will be saved to the team_id field on the record.
Every other field will be added as a team associated with the team set. Adding or removing teams
here will result in this record being assigned a new team set. The team set may already exist, and if
so that id is simply assigned to the record.

Printing to PDF
The OOB Quotes and Reports modules allow users to generate output in PDF format. Sugar uses
theTCPDF engine in order to extend automatic PDF support for a much larger set of languages.
SugarPDF Architecture

The new PDF framework leverages the SugarCRM MVC architecture.

Key Classes
ViewSugarpdf (include/MVC/View/views/view.sugarpdf.php)

This new SugarView instance generates the PDF document. As with all SugarViews,
ViewSugarpdf can be overridden with by

modules/<myModule>/views/view.sugarpdf.php
The Sugarpdf view can be launched by

module=<mymodule>&action=sugarpdf&sugarpdf=<XXX>
TCPDF (include/tcpdf/tcpdf.php)

The TCPDF class is the original class from the TCPDF library. Modifications have been
made to address some bugs that we encountered during our tests with this library.

Sugarpdf (include/Sugarpdf/Sugarpdf.php)
This class extends the TCPDF class. The following methods have been overridden in this
class:

• Header - This method override the regular Header() method to enable the custom image
directory in addition to the OOB image directory.

• SetFont - This method override the regular SetFont() method to enable the custom font
directory in addition to the OOB font directory.

• Cell - Handle HTML entity decode.

• getNumLines - This method is a fix for a better handling of the count. It handles the line
break between words.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 209

Additional methods have been added to this class:

• predisplay - preprocessing before the display method is called. Is intended to setup
general PDF document properties like margin, footer, header, etc.

• display - performs the actual PDF content generation. This is where the logic to display
output to the PDF should be placed.

• process - calls predisplay and display.

• writeCellTable – Method to print a table using the Cell print method of TCPDF

• writeHTMLTable - Method to print a table using the writeHTML print method of TCPDF

Sugarpdf.XXX
Possible Locations :

• include/Sugarpdf/sugarpdf/sugarpdf.XXX.php

• modules/module_name/sugarpdf/sugarpdf.XXX.php

• custom/modules/module_name/sugarpdf/sugarpdf.XXX.php

These classes extend the Sugarpdf class. They define a specific PDF view which is
accessible with the following URL parameters:

• module=module_name

• action=sugarpdf

• sugarpdf=XXX

In this class the display method has to be redefined. It is also possible to override other
methods like Header().
The process method of this class is a call from ViewSugarpdf.
The most relevant sugarpdf.XXX class is chosen by SugarpdfFactory.

SugarpdfFactory
The ViewSugarpdf class uses SugarpdfFactory to find the most relevant sugarpdf.XXX
class which generates the PDF document for a given PDF view and module.
If one is not found, then Sugarpdf is used.
One of the following file will be used in the following order:

1) custom/modules/my_module/sugarpdf/sugarpdf.XXX.php

2) modules/my_module/sugarpdf/sugarpdf.XXX.php

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 210

3) custom/include/Sugarpdf/sugarpdf/sugarpdf.XXX.php

4) include/Sugarpdf/sugarpdf/sugarpdf.XXX.php

5) include/Sugarpdf/sugarpdf.php

SugarpdfHelper
This file is included by Sugarpdf.php. This php file is a utils file. It contains many functions
that can be used to generate PDFs.
For example, to generate HTML code before using the writeHTML() method o TCPDFf
Available functions :

• wrapTag, wrapTD, wrapTable ,etc. - These functions help to create an HTML code

• prepare_string - This function prepare a string to be ready for the PDF printing

• format_number_sugarpdf - This function is a copy of format_number() from currency
with a fix for sugarpdf

FontManager
The FontManager class is a stand-alone class that manages all the fonts for TCPDF.

Functionality:

• List all the available fonts from the OOB font directory and the custom font
directory (it can create a well formatted list for select tag)

• Get the details of each listed font (Type, size, encoding,...) by reading the font
php file

• Add a new font to the custom font directory from a font file and a metric file

• Delete a font from the custom font directory

The font list build by the font manager with the listFontFiles() or getSelectFontList() is saved
in a cached php file cache/Sugarpdf/cachedFontList.php to prevent to parse the fonts folder
every time (if the cached file don't already exist). This file is automatically cleared when the
delete() or add() methods are used. When you create a Font loadable module you will have
to call the clearCachedFile() method in a post_execute and post_uninstall actions to clear
the cache. Like that, the cache will be rebuild with the last infos.

Example of Font loadable module :

manifest.php

<?php
if(!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry Point');

$manifest = array(

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 211

'acceptable_sugar_versions' => array (
'regex_matches' => array (
0 => "5\.5\.*",
),
),
'acceptable_sugar_flavors' => array (
0 => 'PRO',
1 => 'ENT',
),
'name' => 'Font MSung Light',
'description' => 'Font MSung Light (Trad. Chinese) for SugarPDF',
'author' => 'SugarCRM',
'published_date' => '2009-06-17',
'version' => '0.2',
'type' => 'module',
'icon' => '',
'is_uninstallable' => true,
);
global $installdefs;
$installdefs = array(
'id'=> 'Font MSung Light',
'copy' => array(
array('from'=> '<basepath>/new_files/custom/include/tcpdf/fonts/msungstdlight.php',
'to'=> 'custom/include/tcpdf/fonts/msungstdlight.php',
)
),
'pre_execute'=>array(
0 => '<basepath>/actions/pre_actions.php',
),
'pre_uninstall'=>array(
0 => '<basepath>/actions/pre_actions.php',
),
);
?>

pre_actions.php

<?php
require_once("include/Sugarpdf/FontManager.php");
$fontManager = new FontManager();
$fontManager->clearCachedFile();
?>

Chain of Events

1. Call loadSugarpdf method of the SugarpdfFactory - use to determine which sugarpdf.XXX
class to load depending of the sugarpdf URL parameter.

2. Call the process method of the determined sugarpdf.XXX class - this method builds/
prints the PDF

3. Call the output method of the determined sugarpdf.XXX class - this method outputs the
PDF to the user

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 212

PDF settings (user and system)
sugarpdf_config.php

The first existing file from the following is used for TCPDF class configuration:

1. custom/include/Sugarpdf/sugarpdf_config.php

2. include/Sugarpdf/sugarpdf_config.php

The properties set in this file will affect all the generated SugarPDF files.
Check the comments in the file for more details.
The major settings configured in this file are used in the preDisplay method of the Sugarpdf class.

sugarpdf_default.php
include/Sugarpdf/sugarpdf_default.php is used to store the default value of the PDF settings
(system and user).
You can overwrite any default value using custom/include/Sugarpdf/sugarpdf_default.php.
For example if you want to set the default right margin to 25 pdf units, create or modify the file
custom/include/Sugarpdf/sugarpdf_default.php with this content:
$sugarpdf_default['PDF_MARGIN_LEFT']=25;

Mechanism
sugarpdf_config sets all PDF settings in constant variables.
The values used to set the variables come from different sources in a specific order:

1. DB

o Config table for the system settings (category : sugarpdf)

o User_preferences table for the user settings

2. Default value from sugarpdf_default.php in custom directory

o custom/include/Sugarpdf/sugarpdf_default.php

3. Default value from sugarpdf_default.php in OOB directory

o include/Sugarpdf/sugarpdf_default.php

If you modify the settings from the user interface (My Account screen, or PDF settings in admin),
the new values will be saved in the DB and will override the default value from
sugarpdf_default.php .
The Restore button in PDF settings deletes all sugarpdf settings saved in the config table.

The custom directory
Fonts

location : custom/include/tcpdf/fonts/
The font manager parses this directory for available custom font files in addition to the OOB
directory.

Logos
location : custom/themes/default/images
All the uploaded logos from PDF settings are copied to this location.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 213

sugarpdf_default.php
location : custom/include/Sugarpdf/sugarpdf_default.php
This file is included after the OOB sugarpdf_default.php file. It can be used to overwrite any
default value for the PDF settings.

sugarpdf.XXX.php
location : custom/include/Sugarpdf/sugarpdf/sugarpdf.XXX.php
OR
location : custom/modules/<AnyModule>/sugarpdf/sugarpdf.XXX.php
These files are used to override a sugarpdf.XXX.php class for a specific module or for the
whole application.

Adding new PDF templates
To create a new SugarPDF document, check existing examples in Quotes, Reports, and Projects first.
Steps

(For OOB remove "custom/")

1. Add the file custom/modules/<myModule>/sugarpdf/sugarpdf.<mySugarpdf>.php

2. Into the created file :

a) require include/Sugarpdf/Sugarpdf.php

b) create the class <Mymodule>Sugarpdf<mySugarpdf> which extend Sugarpdf

c) Override display() and preDisplay() methods.

3. Create a button in the UI to access SugarPDF
(module=<Mymodule>&action=sugarpdf&sugarpdf=<mySugarpdf>).

<?php
if(!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry Point');
require_once('include/Sugarpdf/Sugarpdf.php');
class <Mymodule>Sugarpdf<mySugarpdf> extends Sugarpdf{
function preDisplay(){
parent::preDisplay();
// ...
}
function display(){
//Create new page
$this->AddPage();
$this->SetFont(PDF_FONT_NAME_MAIN,'',PDF_FONT_SIZE_MAIN);
$this->fileName = "test.pdf";
$this->Ln1();
$this->writeHTML("<p>Bonjour, comment allez vous?</p>");
// ...
}
// ... other method that you would like to override
}

The useful methods to create a SugarPDF document are :

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 214

• Multicell()

• writeHTML()

• writeCellTable()

• writeHTMLTable()

Smarty
You can choose to create a PDF from a Smarty template. You will have to assign variables to the
Smarty template, generate the HTML with Smarty and pass it to TCPDF using the WriteHTML()
method. The SugarpdfSmarty class is an helper class which support part of these steps.
Warning:HTML and CSS support in writeHTML() is limited. For more details, read the TCPDF
documentation
Example in the Contacts module :

• Add custom/modules/Contacts/sugarpdf/sugarpdf.test.php with this content :

<?php
if(!defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry Point');

require_once('include/Sugarpdf/sugarpdf/sugarpdf.smarty.php');

/**
* This is an helper class to generate PDF using smarty template.
* You have to extend this class, set the templateLocation and assign
* the Smarty variables in the preDisplay method.
* @author bsoufflet
*/
class ContactsSugarpdfTest extends SugarpdfSmarty{
function preDisplay(){
parent::preDisplay();
$this->templateLocation = "custom/modules/Contacts/tpls/test.tpl";
$this->ss->assign("AA",$this->bean->last_name);
$this->ss->assign("BB","2");
$this->ss->assign("CC","3");
$this->ss->assign("DD","4");
}
}

• Add custom/modules/Contacts/tpls/test.tpl with this content :

<p>This is just an example of html code to demonstrate some supported CSS inline styles.</p>
<div style="font-weight: bold;">{$AA}</div>
<div style="text-decoration: line-through;">{$BB}</div>
<div style="text-decoration: underline line-through;">{$CC}</div>
<div style="color: rgb(0, 128, 64);">{$DD}</div>
<div style="background-color: rgb(255, 0, 0); color: rgb(255, 255, 255);">background
color</div>
<div style="font-weight: bold;">bold</div>

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 215

<div style="font-size: xx-small;">xx-small</div>
<div style="font-size: small;">small</div>
<div style="font-size: medium;">medium</div>
<div style="font-size: large;">large</div>
<table>
<tr><td>a</td><td>b</td></tr>
<tr><td>c</td><td>d</td></tr>
</table>

• Generate the PDF file using this URL : module=Contacts&action=sugarpdf&sugarpdf=test

How to Add a New Font (without Font Manager)
If you have a TCPDF font file (.php) (and the .z and .ctg.z files if they are needed):

• Create the directory custom/include/tcpdf/fonts if it is not created

• Copy these files into the directory custom/include/tcpdf/fonts

If you have font file (.ttf or .otf):

• Follow steps 1 to 5 of the [TCPDF Fonts webpage]

• Create the directory custom/include/tcpdf/fonts if it is not created

• Copy all the generated files (.php AND .z and .ctg.z if generated) into the directory custom/
include/tcpdf/fonts

makefont.php and the utilities use in the TCPDF Fonts webpage can be found in the TCPDF package in
fonts/utils. You can download the TCPDF package [here].
How to Add More Configurations to PDF Settings

• Create custom/modules/Configurator/metadata/SugarpdfSettingsdefs.php

•
Add any settings that you would like to add to the "basic" or "logo" section
("Advanced" section is not available without modifying an OOB file)

Example :
require_once('include/Sugarpdf/sugarpdf_config.php');
$SugarpdfSettings["sugarpdf_pdf_creator"]=array(
"label"=>$mod_strings["PDF_CREATOR"],
"info_label"=>$mod_strings["PDF_CREATOR_INFO"],
"value"=>PDF_CREATOR,
"class"=>"basic",
"type"=>"text",
"required"=>"true"
);

You can also completely ovewrite the SugarpdfSettings array by writing this for
example in the custom SugarpdfSettingsdefs.php file:

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 216

http://www.tecnick.com/public/code/cp_dpage.php?aiocp_dp=tcpdf_fonts
http://sourceforge.net/project/showfiles.php?group_id=128076

require_once('include/Sugarpdf/sugarpdf_config.php');

$SugarpdfSettings = array(
"sugarpdf_pdf_title"=>array(
"label"=>$mod_strings["PDF_TITLE"],
"info_label"=>$mod_strings["PDF_TITLE_INFO"],
"value"=>PDF_TITLE,
"class"=>"basic",
"type"=>"text",
),
"sugarpdf_pdf_subject"=>array(
"label"=>$mod_strings["PDF_SUBJECT"],
"info_label"=>$mod_strings["PDF_SUBJECT_INFO"],
"value"=>PDF_SUBJECT,
"class"=>"basic",
"type"=>"text",
)
);

In this example, only two fields will be available in PDF settings.

Note: You can viewall the available settings inmodules/Configurator/metadata/
SugarpdfSettingsdefs.php (commented and not commented).
How to create a portal API user
If you are using Sugar Professional, and would like to build a custom portal using the Portal API, you will
need to create a Portal API User to communicate with the Sugar server.
You can enable the functionality as follows:

1. Add the following parameter to config_override.php:

$sugar_config['enable_web_services_us er_creation']= true

2. Log into Sugar as the administrator and navigate to the Administration Home page.

3. Click “User Management”.

4. To register a new user, from the Users tab, select “Create Portal API User”.

You can now pass this user to the Portal API connect calls.
How to enable unsupported email configurations
To improve performance, the following email settings have been disabled, by default:

• The use of POP3 protocol for inbound email accounts.

• The option to select Sendmail for outbound emails.

While you can enable these settings, support from SugarCRM for these features is no longer available. To
re-enable these settings, you will need to add a configuration parameter to the config_override.php file
with the value set to true.
The following table outlines the parameter key that must be set for the desired result:

Parameter Name Result

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
03_Module_Framework

Updated: Thu, 21 Nov 2013 00:53:22 GMT
Powered by 217

allow_sendmail_outbound Enables sendmail for outbound
emails.

allow_pop_inbound Enables the POP3 protocol for
inbound mail accounts.

For example, to enable the POP3 protocol, the config_override.php file would have the following entry
set:

$sugar_config[‘allow_pop_inbound’]= true;

Inline Editing in the Reports Module
This is a hidden feature of Release 6.3.0. You can inline edit the following field types displayed in the
Reports module:

• name

• enum

• currency

This functionality can be enabled by adding the following parameter to config_override.php:
$sugar_config['enable_inline_reports_edit'] = true;
After this parameter has been added to the config file, Reports that have the supported field types in the
display columns will have an edit (pencil) icon beside them. Clicking the icon will enable edits to the field.
Clicking away from the field will retain the edits.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
04_Customizing_Sugar

Updated: Thu, 21 Nov 2013 00:53:23 GMT
Powered by 218

Sugar Logic
1. Overview

2. Terminology

3. Sugar Formula Engine

3.1. Formulas

3.2. Types

3.2.1. Number Type

3.2.2. String Type

3.2.3. Boolean Type

Overview
Sugar Logic, a new feature in Sugar Enterprise and Sugar Professional, is designed to allow custom
business logic that is easy to create, manage, and reuse on both the server and client.

Sugar Logic is made up of multiple components which build off each other and is extensible at every
step. The base component is the Sugar Formula Engine which parses and evaluates human readable
formulas. Dependencies are units made up of triggers and actions that can express custom business
logic. Each dependency defines a list of actions to be performed depending on the outcome of a trigger
formula.

Terminology

•
Formula: An expression that conforms to the Formula Engine syntax consisting of nested
functions and field variables.

• Function: A method which can be called in a formula.

•
Trigger: A Formula which evaluates to either true or false. Triggers are evaluated whenever
a field in the equation is updated or when a record is retrieved/saved.

• Action: A method which modifies the current record or layout in some way.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
04_Customizing_Sugar

Updated: Thu, 21 Nov 2013 00:53:23 GMT
Powered by 219

• Dependency: A complete logical unit which includes a trigger and one or more actions.

Sugar Formula Engine

Formulas

The fundamental object is called a Formula. A Formula can be evaluated for a given record using the
Sugar Logic parser.

Some example formulas are:

Basic addition: add(1, 2)

Boolean values: not(equal($billing_state, "CA"))

Calculation: multiply(number($employees), $seat_cost, 0.0833)

Types

Sugar Logic has several fundamental types. They are: number, string, boolean, and enum (lists).
Functions may take in any of these type or combinations thereof and return as output one of these
types. Fields may also often have their value set to only a certain type.

Number Type

Number types essentially represent any real number (which includes positive, negative, and decimal
numbers). They can be plainly typed in as input to any function. For example, the operation (10 + 10 +
(15 - 5)) can be performed as follows:

add(10, 10, subtract(15, 5))

String Type

A string type is very much like a string in most programming languages. However, it can only be
declared within double quotes. For example, consider this function which returns the length of the input
string:

strlen("Hello World")

The function would appropriately return the value 11.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
04_Customizing_Sugar

Updated: Thu, 21 Nov 2013 00:53:23 GMT
Powered by 220

Boolean Type

A boolean type is simple. It can be one of two values: true or false. This type mainly acts as a flag, as
in whether a condition is met or not. For example, the function contains takes in as input two strings
and returns true if the first string contains the second string or false otherwise.

and(contains("Hello World", "llo Wo"), true)

The function would appropriately return the value true.

Enum Type (list)

An enum type is a collection of items. The items need to all be of the same type, they can be varied. An
enum can be declared using the enum function as follows:

enum("hello world!", false, add(10, 15))

Alternatively, the createList function (an alias to enum) can be used to create
enums in a formula.

createList("hello world!", false, add(10, 15))

This function would appropriately return an enum type containing "hello world!", false, and 25 as its
elements.

Link Type (relationship)

A link represents one side of a relationship and is used to access related records. For example, the
accounts link field of Contacts is used to access the account_type field of the Account related to a
Contact:

related($accounts, "account_type")

For most of the out-of-the-box relationships, links are named with the name of the related module, in
lower case.

Follow the steps listed below to find the name of the link fields for relationships that do not follow the
convention above:

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
04_Customizing_Sugar

Updated: Thu, 21 Nov 2013 00:53:23 GMT
Powered by 221

1.
Open the vardef file for the module you are working on: cache/
modules/{Module_Name}/{module}vardefs.php

2. Find the link field that matches the relationship you are looking for.

Functions

Functions are methods to be used in formulas. Each function has a function name , a parameter count, a
parameter type requirement, and returns a value. Some functions such as add can take any number of
parameters. For example: add(1), add(1, 2), add(1, 2, 3) are all valid formulas. Functions are designed
to produce the same result whether executed on the server or client.

Triggers

A Trigger is an object that listens for changes in field values and after a change is performed, triggers
the associated Actions in a Dependency.

Actions

Actions are functions which modify a target in some way. Most Actions require at least two parameters:
a target and a formula. For example, a style action will change the style of a field based on a passed in
string formula. A value action will update a value of a field by evaluating a passed in formula.

Dependencies

A Dependency describes a set of rules based on a trigger and a set of actions. Examples include a field
whose properties must be updated dynamically or a panel which must be hidden when a drop down
value is not selected. When a Dependency is triggered it will appropriately carry out the action it is
designed to. A basic Dependency is when a field's value is dependent on the result of evaluating a
Expression. For example, consider a page with five fields with It’s "a", "b", "c", "d", and "sum". A generic
Dependency can be created between "sum" and the other four fields by using an Expression that links
them together, in this case an add Expression. So we can define the Expression in this manner:
'add($a, $b, $c, $d)' where each field id is prefixed with a dollar ($) sign so that the value of the field
is dynamically replaced at the time of the execution of the Expression.

An example of a more customized Dependency is when the field's style must be somehow updated to a
certain value. For example, the DIV with id "temp" must be colored blue. In this case we need to change
the background-color property of "temp". So we define a StyleAction in this case and pass it the field id
and the style change that needs to be performed and when the StyleAction is triggered, it will change
the style of the object as we have specified.

Sugar Logic Based Features

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
04_Customizing_Sugar

Updated: Thu, 21 Nov 2013 00:53:23 GMT
Powered by 222

Calculated Fields

Fields with calculated values can now be created from within Studio and Module Builder. The values are
calculated based on Sugar Logic formulas. These formulas are used to create a new dependency that are
executed on the client side in edit views and the server side on save. The formulas are saved in the
varies or vardef extensions and can be created and edited directly. For example, the metadata for a
simple calculated commission field in opportunities might look like:

'commission_c' => array(

'name' => 'commission_c',

'type' => 'currency',

'calculated' => true,

'formula' => 'multiply($amount, 0.1)',

//enforced causes the field to appear read-only on the layout

'enforced' => true

)

Dependent fields

A dependent field will only appear on a layout when the associated formula evaluates to the Boolean
value true. Currently these cannot be created through Studio and must be enabled manually with a
custom vardef or vardef extension. The “dependency” property contains the expression that defines
when this field should be visible. An example field that only appears when an account has an annual
revenue greater than one million.

'dep_field'=> array(

'name' => 'dep_field',

'type' => 'varchar',

'dependency' => 'greaterThan($annual_revenue, 1000000)',

)

Dependent drop-down

Dependent drop-downs are drop-downs for which options change when the selected value in a trigger
drop-down changes. The metadata is defined in the vardefs and contains two major components, a
“trigger” id which is the name of the trigger drop-down field and a ‘visibility grid’ that defines the set of

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
04_Customizing_Sugar

Updated: Thu, 21 Nov 2013 00:53:23 GMT
Powered by 223

options available for each key in the trigger drop-down. For example, you could define a sub-industry
field in accounts whose available values depend on the industry field.

'sub_industry_c' => array(

'name' => 'sub_industry_c',

'type' => 'enum',

'options' => 'sub_industry_dom',

'visibility_grid'=> array(

'trigger' => 'industry',

'values' => array(

'Education' => array('primary', 'secondary', 'college'),

'Engineering' => array('mechanical', 'electrical', 'software'),

),

),

)

Using Sugar Logic Directly

Creating a custom dependency using metadata

Starting in 6.2, we now have the ability to define custom dependencies via metadata. The files
should be located in custom/Extension/modules/{module_name}/Ext/Dependencies/
{dependency_name}.php and be rebuilt with a quick repair after modification.

Dependencies can have the following properties:

•
hooks: Defines when the dependency should be evaluated. Possible values are edit
(on edit/quickCreate views), view (Detail/Wireless views), save (during a save
action), and all (any time the record is accessed/saved).

•
trigger: A boolean formula that defines if the actions should be fired. (optional,
defaults to ‘true’)

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
04_Customizing_Sugar

Updated: Thu, 21 Nov 2013 00:53:23 GMT
Powered by 224

•
triggerFields: An array of field names that when when modified should trigger re-
evaluation of this dependency on edit views. (optional, defaults to the set of fields
found in the trigger formula)

•
onload: If true, the dependency will be fired when an edit view loads (optional,
defaults to true)

• actions: An array of action definitions to fire when the trigger formula is true.

•
notActions: An array of action definitions to fire when the trigger formula is false.
(optional)

The actions are defined as an array with the name of the action and a set of parameters to
pass to that action. Each action takes different parameters, so you will have to check each
actions class constructor to check what parameters it expects.

The following example dependency will set the resolution field of cases to be required when the
status is Closed:

<?php

$dependencies['Cases']['required_resolution_dep'] = array(

'hooks' => array("edit"),

'trigger' => 'true', //Optional, the trigger for the dependency. Defaults to 'true'.

'triggerFields' => array('status'),

'onload' => true,

//Actions is a list of actions to fire when the trigger is true

'actions' => array(

array(

'name' => 'SetRequired',

//The parameters passed in will depend on the action type set in 'name'

'params' => array(

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
04_Customizing_Sugar

Updated: Thu, 21 Nov 2013 00:53:23 GMT
Powered by 225

'target' => 'resolution',

'label' => 'resolution_label',//id of the label to add the required symbol to

'value' => 'equal($status, "Closed")' //Set required if the status is closed

)

),

),

//Actions fire if the trigger is false. Optional.

'notActions' => array(),

);

Creating a custom dependency for a view

Dependencies can also be created and executed outside of the built in features. For example, if you
wanted to have the description field of the Calls module become required when the subject contains a
specific value, you could extend the calls edit view to include that dependency.

<?php

//custom/modules/Calls/views/view.edit.php

require_once('include/MVC/View/views/view.edit.php');

require_once("include/Expressions/Dependency.php");

require_once("include/Expressions/Trigger.php");

require_once("include/Expressions/Expression/Parser/Parser.php");

require_once("include/Expressions/Actions/ActionFactory.php");

class CallsViewEdit extends ViewEdit {

function CallsViewEdit(){

parent::ViewEdit();

}

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
04_Customizing_Sugar

Updated: Thu, 21 Nov 2013 00:53:23 GMT
Powered by 226

function display() {

parent::display();

$dep = new Dependency("description_required_dep");

$triggerExp = 'contains($name, "important")';

//will be array('name')

$triggerFields = Parser::getFieldsFromExpression($triggerExp);

$dep->setTrigger(new Trigger($triggerExp, $triggerFields));

//Set the description field to be required if "important" is in the call subject

$dep->addAction(ActionFactory::getNewAction('SetRequired', array(

'target' => 'description',

'label' => 'description_label',

'value' => 'true')

));

//Set the description field to NOT be required if "important" is NOT in the call subject

$dep->addFalseAction(ActionFactory::getNewAction('SetRequired', array(

'target' => 'description',

'label' => 'description_label',

'value' => 'false')

));

//Evaluate the trigger immediatly when the page loads

$dep->setFireOnLoad(true);

$javascript = $dep->getJavascript();

echo <<<EOQ

<script type=text/javascript>

SUGAR.forms.AssignmentHandler.registerView('EditView');

{$javascript}

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
04_Customizing_Sugar

Updated: Thu, 21 Nov 2013 00:53:23 GMT
Powered by 227

</script>

EOQ;

}

}

The above code creates a new Dependency object with a trigger based on the 'name' (Subject) field in of
the Calls module. It then adds two actions. The first will set the description field to be required when the
trigger formula evaluates to true (when the subject contains "important"). The second will fire when the
trigger is false and removes the required property on the description field. Finally, the javascript version
of the Dependency is generated and echoed onto the page.

Using dependencies in Logic Hooks

Dependencies can not only be executed on the server side, but can be useful entirely on the server. For
example, you could have a dependency that sets a rating based on a formula defined in a language file.

require_once("include/Expressions/Dependency.php");
require_once("include/Expressions/Trigger.php");
require_once("include/Expressions/Expression/Parser/Parser.php");

require_once("include/Expressions/Actions/ActionFactory.php");

class Update_Account_Hook {

function updateAccount($bean, $event, $args) {

$formula = translate('RATING_FORMULA', 'Accounts');
$triggerFields = Parser::getFieldsFromExpression($formula);
$dep = new Dependency('updateRating');
$dep->setTrigger(new Trigger('true', $triggerFields));
$dep->addAction(ActionFactory::getNewAction('SetValue',
array('target' => 'rating', 'value' => $formula)));
$dep->fire($bean);

}

}

Extending Sugar Logic

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
04_Customizing_Sugar

Updated: Thu, 21 Nov 2013 00:53:23 GMT
Powered by 228

The most important feature of Sugar Logic is that it is simply and easily extendable. Both custom
formula functions and custom actions can be added in an upgrade safe manner to allow almost any
custom logic to be added to Sugar.

Writing a custom formula function

Custom functions will be stored in "custom/include/Expressions/
Expression/{Type}/{Function_Name}.php". The first step in writing a custom function is to decide
what category the function falls under. Take for example a function for calculating the factorial of a
number. In this case we will be returning a number so we will create a file in "custom/include/
Expressions/Expression/Numeric/" called "FactorialExpression.php". In the new PHP file we just created,
we will define a class called FactorialExpression that will extend NumericExpression. All formula
functions must follow the format "{functionName}Expression.php" and the class name must match the
file name. Next we need to decide what parameters the function will accept. In this case, we need take
in a single parameter, the number to return the factorial of. Since this class will be a sub-class of
NumericExpression, it by default accepts only numeric types, we need not worry about specifying the
type requirement.

Next, we must define the logic behind evaluating this expression. So we must override the abstract
evaluate() function. The parameters can be accessed by calling an internal function getParameters()
which returns the parameters passed in to this object. So with all this information we can go ahead and
write the code for the function.

<?php
require_once('include/Expressions/Expression/Numeric/NumericExpression.php');
class FactorialExpression extends NumericExpression {
function evaluate() {
$params = $this->getParameters();
// params is an Expression object, so evaluate it
// to get its numerical value
$number = $params->evaluate();

// exception handling
if (! is_int($number)) {
throw new Exception("factorial: Only accepts integers");
}

if ($number < 0) {
throw new Exception("factorial: The number must be positive");
}

// special case 0! = 1
if ($number == 0) return 1;

// calculate the factorial
$factorial = 1;

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
04_Customizing_Sugar

Updated: Thu, 21 Nov 2013 00:53:23 GMT
Powered by 229

for ($i = 2 ; $i <= $number ; $i ++)
$factorial = $factorial * $i;

return $factorial;
}
// Define the javascript version of the function
static function getJSEvaluate() {
return <<<EOQ
var params = this.getParameters();
var number = params.evaluate();

// reg-exp integer test
if (! /^\d*$/.test(number))
throw "factorial: Only accepts integers";
if (number < 0)
throw "factorial: The number must be postitive";

// special case, 0! = 1
if (number == 0)
return 1;

// compute factorial
var factorial = 1;
for (var i = 2 ; i <= number ; i ++)
factorial = factorial * i;
return factorial;
EOQ;
}

function getParameterCount() {
return 1; // we only accept a single parameter
}

static function getOperationName() {
return "factorial"; // our function can be called by 'factorial'
}
}

One of the key features of Sugar Logic is that the functions should be defined in both php and javascript,
and have the same functionality under both circumstances. As you can see above, the getJSEvaluate()
method should return the JavaScript equivalent of your evaluate() method. The JavaScript code is
compiled and assembled for you after you run the “Rebuild Sugar Logic Functions” script through the
admin panel.

Writing a custom action

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
04_Customizing_Sugar

Updated: Thu, 21 Nov 2013 00:53:23 GMT
Powered by 230

Using custom actions, you can easily create reusable custom logic or integrations that can include user-
editable logic using the Sugar Formula Engine. Custom actions will be stored in "custom/include/
Expressions/Actions/{ActionName}.php". Actions files must end in "Action.php" and the class defined
in the file must match the file name and extend the "AbstractAction" class. The basic functions that must
be defined are "fire", "getDefinition", "getActionName", "getJavascriptClass", and "getJavscriptFire".
Unlike functions, there is no requirement that an action works exactly the same both server and client
side as this is not always sensible or feasible.

A simple action could be a "WarningAction" that shows an alert warning the user that something may
be wrong, and logs a message to the sugarcrm.log file if triggered on the server side. It will take in a
message as a formula so that the message can be customized at run time. We would do this by creating
a php file in "custom/include/Expressions/Actions/WarningAction.php". containing the following code:

<?php

require_once("include/Expressions/Actions/AbstractAction.php");
class WarningAction extends AbstractAction{
protected $messageExp = "";

function SetZipCodeAction($params) {
$this->messageExp = $params['message'];
}

/**
* Returns the javascript class equavalent to this php class
* @return string javascript.
*/
static function getJavascriptClass() {
return "
SUGAR.forms.WarningAction = function(message) {
this.messageExp = message;
};
//Use the sugar extend function to extend AbstractAction
SUGAR.util.extend(SUGAR.forms.WarningAction, SUGAR.forms.AbstractAction, {
//javascript exection code
exec : function()
{
//assume the message is a formula
var msg = SUGAR.forms.evalVariableExpression(this.messageExp);
alert(msg.evaluate());
}
});";
}
/**
* Returns the javascript code to generate this actions equivalent.
* @return string javascript.
*/

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
04_Customizing_Sugar

Updated: Thu, 21 Nov 2013 00:53:23 GMT
Powered by 231

function getJavascriptFire() {
return "new SUGAR.forms.WarningAction('{$this->messageExp}')";
}
/**
* Applies the Action to the target.
* @param SugarBean $target
*/
function fire(&$target) {
//Parse the message formula and log it to fatal.
$expr = Parser::replaceVariables($this->messageExp, $target);
$result = Parser::evaluate($expr)->evaluate();
$GLOBALS['log']->warn($result);
}
/**
* Returns the definition of this action in array format.
*/
function getDefinition() {
return array(
"message" => $this->messageExp,
);
}

/**
* Returns the short name used when defining dependencies that use this action.
*/
static function getActionName() {
return "Warn";
}

}

Accessing an external API with a Sugar Logic action

Let us say we were building a new Action called "SetZipCodeAction" that uses the yahoo geocode API
to get the zip code for a given street + city + state address.

Since the Yahoo Geocode API requires JSON requests and returns XML data, we will have to write both
php and javascript code to make and interpret the requests. Because accessing external APIs in a
browser is considered cross site scripting, a local proxy will have to be used. We will also allow the
street, city, state parameters to be passed in as formulas so the action could be used in more complex
Dependencies.

First, we should add a new action that acts as the proxy for retrieving data from the Yahoo API. The
easiest place to add that would be a custom action in the "Home" module. The file that will act as the
proxy will be "custom/modules/Home/geocode.php". It will take in the parameters via a REST call, make
the call to the Yahoo API, and return the result in JSON format.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
04_Customizing_Sugar

Updated: Thu, 21 Nov 2013 00:53:23 GMT
Powered by 232

geocode.php contents:

<?php
function getZipCode($street, $city, $state) {
$appID = "6ruuUKjV34Fydi4TE.ca.I02rWh.9LTMPqQnSQo4QsCnjF5wIvyYRSXPIzqlDbI.jfE-";
$street = urlencode($street);
$city = urlencode($city);
$state = urlencode($state);

$base_url = "http://local.yahooapis.com/MapsService/V1/geocode?";
$params = "appid={$appID}&street={$street}&city={$city}&state={$state}";

//use file_get_contents to easily make the request
$response = file_get_contents($base_url . $params);

//The PHP XML parser is going to be overkill in this case, so just pull the zipcode with a regex.
preg_match('/\<Zip\>([\d-]*)\<\/Zip\>/', $response, $matches);

return $matches[1];
}

if (!empty($_REQUEST['execute'])) {
if (empty($_REQUEST['street']) || empty($_REQUEST['city']) || empty($_REQUEST['state']))
echo("Bad Request");
else
echo json_encode(array('zip' => getZipCode($_REQUEST['street'], $_REQUEST['city'], $_REQUEST['state'])));

}

Next we will need to map the geocode action to the geocode.php file. This is done by adding an action
map to the Home Module. We need to create the file "custom/modules/Home/action_file_map.php" and
add the following line of code:

<?php

$action_file_map['geocode'] = 'custom/modules/Home/geocode.php';

We are now ready to write our Action. Start by creating the file custom/include/Expressions/
Actions/SetZipCodeAction.php. This file will use the proxy function directly from the php side and make
an asynchronous call on the javascript side to the proxy.

SetZipCodeAction.php contents:

<?php
require_once("include/Expressions/Actions/AbstractAction.php");

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
04_Customizing_Sugar

Updated: Thu, 21 Nov 2013 00:53:23 GMT
Powered by 233

http://local.yahooapis.com/MapsService/V1/geocode

class SetZipCodeAction extends AbstractAction{
protected $target = "";
protected $streetExp = "";
protected $cityExp = "";
protected $stateExp = "";

function SetZipCodeAction($params) {
$this->target = empty($params['target']) ? " " : $params['target'];
$this->streetExp = empty($params['street']) ? " " : $params['street'];
$this->cityExp = empty($params['city']) ? " " : $params['city'];
$this->stateExp = empty($params['state']) ? " " : $params['state'];
}

static function getJavascriptClass() {
return "
SUGAR.forms.SetZipCodeAction = function(target, streetExp, cityExp, stateExp) {
this.street = streetExp;
this.city = cityExp;
this.state = stateExp;
this.target = target;
};
SUGAR.util.extend(SUGAR.forms.SetZipCodeAction, SUGAR.forms.AbstractAction, {
targetUrl:'index.php?module=Home&action=geocode&to_pdf=1&execute=1&',
exec : function()
{
var street = SUGAR.forms.evalVariableExpression(this.street).evaluate();
var city = SUGAR.forms.evalVariableExpression(this.city).evaluate();
var state = SUGAR.forms.evalVariableExpression(this.state).evaluate();
var params = SUGAR.util.paramsToUrl({
street: encodeURIComponent(street),
city: encodeURIComponent(city),
state: encodeURIComponent(state)
});
YAHOO.util.Connect.asyncRequest('GET', this.targetUrl + params, {
success:function(o){
var resp = YAHOO.lang.JSON.parse(o.responseText);
SUGAR.forms.AssignmentHandler.assign(this.target, resp.zip);
},
scope:this
});
}
});";
}

function getJavascriptFire() {
return "new SUGAR.forms.SetZipCodeAction('{$this->target}', '{$this->streetExp}', "
. "'{$this->cityExp}', '{$this->stateExp}')";

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
04_Customizing_Sugar

Updated: Thu, 21 Nov 2013 00:53:23 GMT
Powered by 234

}

function fire(&$bean) {
require_once("custom/modules/Home/geocode.php");
$vars = array('street' => 'streetExp', 'city' => 'cityExp', 'state' => 'stateExp');
foreach($vars as $var => $exp) {
$toEval = Parser::replaceVariables($this->$exp, $bean);
$$var = Parser::evaluate($toEval)->evaluate();
}
$target = $this->target;
$bean->$target = getZipCode($street, $city, $state);
}

function getDefinition() {
return array(
"action" => $this->getActionName(),
"target" => $this->target,
);
}

static function getActionName() {
return "SetZipCode";
}

}

Once you have the action written, you need to call it somewhere in the code. Currently this must be
done as shown above using custom views, logic hooks, or custom modules. This will change in the future
and creating custom dependencies and taking advantage of custom actions should become a simpler
process requiring little to no custom code.

Updating the Cache

The updatecache.php script in the main directory traverses the Expression directory for every file that
ends with "Expression.php" (ignoring a small list of excepted files) and constructs both a PHP and a
JavaScript functions cache file which resides in "cache/Expressions/functions_cache.js" and "cache/
Expressions/functionmap.php". So after you create your custom functions, you should run this script to
integrate it into the entire framework. This can be done using the "Rebuild Sugar Logic Functions" link on
the Admin Repair page.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
05_Sugar_Logic

Updated: Thu, 21 Nov 2013 00:53:23 GMT
Powered by 235

OAuth
1. Overview

2. Using OAuth with Sugar

2.1. Step 1: Establishing Consumer Key

2.2. Step 2: Creating Request Token

2.3. Step 3: Approve Request Token

2.4. Step 4: Request Access Token

2.5. Step 5: Using Access Token

Overview
OAuth (Open Authorization) is an open standard for authorization users across software applications.
SugarCRM implements Oauth in order to integrate with other applications such as IBM Lotus Live.

Using OAuth with Sugar

Step 1: Establishing Consumer Key

You need to create a Consumer Key/Secret Pair in Admin/OAuth keys page to use the Sugar OAuth
provider. The key pair can be arbitrary strings and should be used by your client when calling OAuth
functions.

Step 2: Creating Request Token

Make a REST call to oauth_request_token method (supported in REST API version 4) to create a
Request Token. Example using PHP OAuth extension:
$oauth = new OAuth('CUSTOMKEY','CUSTOMSECRET',OAUTH_SIG_METHOD_HMACSHA1,OAUTH_AUTH_TYPE_URI);
$url = 'http://mysugarinstance.com/service/v4/rest.php';
$request_token_info = $oauth->getRequestToken($url."?method=oauth_request_token");

The response for this method is the query-encoded string containing the following three parameters:

• oauth_token

• oauth_token_secret

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
05_Sugar_Logic

Updated: Thu, 21 Nov 2013 00:53:23 GMT
Powered by 236

http://oauth.net/about/
http://mysugarinstance.com/service/v4/rest.php

• authorize_url

Example:
oauth_token=bf1492236fbe&oauth_token_secret=5b05d09a0b7e&oauth_callback_confirmed=true&authorize_url=http%3A%2F%2Fmysugarinstance.com%2Findex.php%3Fmodule%3DOAuthTokens%26action%3Dauthorize

The PHP OAuth extension method getRequestToken automatically parses the string and returns it as
an array, other clients parse the string manually.

Step 3: Approve Request Token

The Request Token should be approved manually by the user. To achieve this, the user should log into
Sugar and then go to the URL produced by adding token to the authorize URL returned above, e.g.:
http://mysugarinstance.com/index.php...n=bf1492236fbe

The client should produce this URL for the user with the information returned in the previous step. The
user then receives the verification code required to input in the client application.

Step 4: Request Access Token

The client should use the token and secret received in Step 2 and the verifier that the user received in
Step 3 to request the Access Token, using the oauth_access_token method. Example using PHP OAuth
extension:

$oauth = new OAuth('CUSTOMKEY','CUSTOMSECRET',OAUTH_SIG_METHOD_HMACSHA1,OAUTH_AUTH_TYPE_URI);

$url = 'http://mysugarinstance.com/service/v4/rest.php';

$oauth->setToken($token, $secret);

$access_token_info = $oauth->getAccessToken($url."?method=oauth_access_token&oauth_verifier=$verify");

The response for this contains the OAuth Access Token and secret, query-encoded.

Example:

oauth_token=bf1492236fbe&oauth_token_secret=5b05d09a0b7e

Again, the PHP OAuth extension method getAccessToken automatically parses the string and returns it
as an array; other clients parse the string manually.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/
05_Sugar_Logic

Updated: Thu, 21 Nov 2013 00:53:23 GMT
Powered by 237

http://mysugarinstance.com/index.php?module=OAuthTokens&action=authorize&token=bf1492236fbe
http://mysugarinstance.com/service/v4/rest.php

Step 5: Using Access Token

Access token can be used either directly to access REST API methods via OAuth, or to establish a login
session.

Use the access token directly to access any method via OAuth:

$oauth = new OAuth('CUSTOMKEY','CUSTOMSECRET',OAUTH_SIG_METHOD_HMACSHA1,OAUTH_AUTH_TYPE_URI);

$url = 'http://mysugarinstance.com/service/v4/rest.php';

$oauth->setToken($token, $secret);

$data = $oauth-
>fetch($url."?method=get_available_modules&input_type=JSON&request_type=JSON&response_type=JSON");

Use the recommended oauth_access method to establish a new session (similar to username/password
login):

$oauth = new OAuth('CUSTOMKEY','CUSTOMSECRET',OAUTH_SIG_METHOD_HMACSHA1,OAUTH_AUTH_TYPE_URI);

$url = 'http://mysugarinstance.com/service/v4/rest.php';

$oauth->setToken($token, $secret);

$data = $oauth-
>fetch($url."?method=oauth_access&input_type=JSON&request_type=JSON&response_type=JSON");

You will receive a JSON response which will have session ID as id value. Use this ID as session
parameter to other calls.

http://support.sugarcrm.com/02_Documentation/04_Sugar_Developer/Sugar_Developer_Guide_6.3/06_Oauth
Updated: Thu, 21 Nov 2013 00:53:23 GMT

Powered by

238

http://mysugarinstance.com/service/v4/rest.php
http://mysugarinstance.com/service/v4/rest.php

	Sugar Developer Guide 6.3
	Sugar Developer Guide 6.3
	Preface
	Overview
	The Sugar Application
	The Sugar Community
	Audience
	Application Overview
	Core Features
	Sales Force Automation
	Marketing Automation
	Customer Support
	Collaboration
	Reporting
	Administration

	Related Documentation
	Introduction
	Overview
	Background
	Application Framework
	Directory Structure
	Key Concepts
	Application Concepts
	Files
	Variables
	Entry Points

	Module Framework
	User Interface Framework
	Extension Framework
	Sugar Dashlets
	Web Services
	Connectors
	Application Framework
	Overview
	Entry Points
	Sugar 5 to Sugar 6 Upgrade Implications
	Backwards Compatibility with Custom Code

	File Caching
	Sugar Dashlets
	Sugar Dashlet Files
	Templating
	Categories
	Sugar Dashlet base class
	Sugar Dashlets JavaScript

	Browser JavaScript
	Accessing Language Pack Strings
	Quicksearch
	Requirements for a QuickSearch field
	Support for custom/include/Smarty/plugins for custom code

	ACL
	Scheduler
	Databases
	Indexes
	Primary Keys, Foreign Keys, and GUIDs

	Logger
	Logger Level
	Log File Name
	Log File Extension
	Log File Date Format
	Max Log File Size
	Max Number of Log Files
	Log Rotation
	Custom Loggers

	Web Services
	SOAP
	SOAP Protocol

	REST
	REST Protocol

	SOAP vs. REST
	Core Calls
	Call: get_entry()
	Call: get_entries()
	Call: get_entry_list()
	Call: set_relationship()
	Call: set_relationships()
	Call: get_relationship()
	Call: set_entry()
	Call: set_entries()
	Call: login()
	Call: logout()
	Call: get_user_id()
	Call: get_module_fields()
	Call: seamless_login()
	Call: set_note_attachment()
	Call: get_note_attachment()
	Call: set_document_revision()
	Call: get_document_revision()
	Call: search_by_module()
	Call: get_available_modules()
	Call: get_user_team_id()
	Call: set_campaign_merge()
	Call: get_entries_count()
	Call: get_report_entries()
	Call: get_quotes_pdf()
	Call: get_report_pdf()
	Call: get_module_fields_md5()
	Call: get_module_layout()
	Call: get_module_layout_md5()
	Call: get_last_viewed()
	Call: get_upcoming_activities()
	Sample Code
	Sample Request for User Login

	Upgrade-safe extensibility

	SOAP Errors

	Connectors Framework
	Factories
	Sources
	Formatters
	Class definitions
	Login method definitions
	loadEAPM
	checkLogin
	quickCheckLogin
	logOff

	Document Method Definitions
	uploadDoc
	downloadDoc
	shareDoc
	deleteDoc
	searchDoc
	loadDocCache

	Module Framework
	Overview
	User Interface Framework
	Model-View-Controller (MVC) Overview
	SugarCRM MVC Implementation
	Model
	Sugar Object Templates
	File Structure
	Implementation

	Performance Considerations
	Cache Files

	Controller
	Upgrade-Safe Implementation
	File Structure
	Implementation

	Customizing Sugar
	Overview
	Introduction
	Tips
	Making upgrade-safe customizations
	Installing Third-Party Modules
	Naming Your Custom Modules
	Be Familiar with Object Oriented Programming
	Use Developer Mode when Customizing the User Interface

	The Custom Directory
	Vardefs
	Master Directories
	Production Directories
	Description

	Languages
	Master Directories
	Production Directories
	Description

	Shortcuts
	Master Directories
	Production Directories
	Description

	Layoutdefs
	Master Directories
	Production Directories
	Rule
	Description

	Module Builder
	Creating New Modules
	Understanding Object Templates
	Editing Module Fields
	Editing Module Layouts
	Building Relationships
	Publishing and Uploading Packages
	Adding Custom Logic using Code
	Logic Hooks
	Custom Bean files

	Sugar Logic
	Overview
	Terminology
	Sugar Formula Engine
	Formulas
	Types
	Number Type
	String Type
	Boolean Type

	OAuth
	Overview
	Using OAuth with Sugar
	Step 1: Establishing Consumer Key
	Step 2: Creating Request Token
	Step 3: Approve Request Token
	Step 4: Request Access Token
	Step 5: Using Access Token

