Sugar Developer Guide 12.0

1/2.508

Sugar Developer Guide 12.0 18

Introduction e 18
Development Methodology i e 21
COMIPOS T . . . i e e 28
Delivery and Deployment Guide for Enterprises 31
Sugar 11.3 to 12.0 Migration Guide 45

User Interface 46
SIdeCar . .. e 47
Bvents | ... e 50
RoUtes | . 53
Handlebars 58
Layouls | . 60

Creating Layouts | | e 64
Overriding Layouts . . . 66
VWS | e e e 70
Metadata | | . . 75
Fields . . . e 80
Subpanels | . e 83
Dashlets | 91
DraW TS | e 103
AleTtS 105
Language 108
MegaMenu | e 111
Administration Links 116
Legacy MVC | | . e 118
VW 119
Controller | | L e 124
Metadata | | . . . 128
Examples 142

Hiding the Quotes Module PDF Buttons - = =~ L 142
Manipulating Buttons on Legacy MVC Layouts = = = =L 145
Manipulating Layouts Programmatically = =~ =L 153

Modifying Layouts to Display Additional Columns 15 4
EXamples | 157
Changing the ListView Default Sort Order =~ 157

Data FrameworkK e 162
Modules e 162
Models | . .. e 165

SugarBean | | L 167
Customizing Core SugarBeans e 174
Implementing Custom SugarBean Templates = 177

BeanFactory | | 191

Vardefs | ... 193
Specifying Custom Indexes for Import Duplicate Checking 198
Working With Indexes | | | | 200

2/2.508

Fields . . 204

Relationships e 206
Custom Relationships | | | e 207
Subpanels | .. e 212
Database e 220
DBManager | | | L e e e 223
SUGArQUETY | | L L e 229
SugarQuery Conditions 240
Advanced Techniques L 248
Architecture e 259
Autoloader | 262
Configuration APT 264
File Check APL e 264
File Map Modification APT | . 267
Metadata AP | | e 268
Caching e 270
Uploads e 270
Working with File Uploads | | | | 274
Email | . e 276
Mailer Factory | | 281
Email Addresses e 285

Logging 297

Creating Custom Loggers | | 301
POR-3 Logger | | L e 303
SUGArLOgger | | L e e e 312
Logic HOOKS | e 317
Application HOOKS | | | . . . e e 322
after_entry point 323
after_load _user L e e 324
after_session_start 326
after_ui footer L e 328
after_ui_frame 330
entry point variables setting L 333
handle_exception 335
server_ round trip L e e e 337
Module Hooks 339
after_delete e e 339
after fetch query 342
after_relationship add = 345
after_relationship delete 348
after TestoTe L e 351
after retrieve 354
AT SAVe L e e e 357
before_delete 360
before fetch query L 363

3/2.508

before relationship_delete = L 368
before restore L 370
before save 373
process Tecord e e e e 376
User HOOKS | | | 379
after login e e 379
after logout 381
before logout L 382
login failed 384
Job Queue HoOKS | | 386
Job_failure 386
job_failure retry 388
SNIP HOOKS | | 390
after_email import L e 390
before_email import =~ 392
APLHOOKS | | 393
after routing e 394
before api call e 395
before filter = 397
before respond L 400
before_routing 402
Web Logic HOOKS | | | . . 403
Logic Hook Release Notes | | it 407
LanguagesS . .. e 409
Application Labels and Lists | | |, 412
Module Labels | | e 416
Managing Lists | | .. 419
Language Packs | | .. e 421
EXEensSions e 427
ActionFileMap | | | . e 429
ActionReMaD | | | L e 431
ActionViewMaD | | e 433
Administration | | 436
Application Schedulers | | L 439
COmS0le | L 442
Dependencies | | | e 444
EntryPointRegistry . e 447
B enSIONS | e 449
FileAccessControIMap | | 452
Include | | e 454
JSGroupings | | L e 457
Language | e e 461
Layoutdefs | | e 464
LogicHOOKS | | . e 467

4/2.508

Modules 471

Platforms 474
ScheduledTasks e 476
SIdeCar | L 479
Ty MCE 481
UserPage | e 484
US| e 486
Vardefs 488
WirelessLayoutdefs | 491
WirelessModuleRegistry e 493
Balers . 495
Duplicate Check 510
Elastic Search 516
Global Search 528
Sugar Logic e 534
Dependency Actions 539
ReadOnly e 540
SelOPHONS e 543
SetPanelVisibility e 546
SetRequired 547
SetValue e 549
SetVisibility 553
Extending Sugar Logic 555
Using Sugar Logic Directly 560
Accessing an External API with a Sugar Logic Action 560
Creating a Custom Dependency fora View = 564
Creating a Custom Dependency Using Metadata 565

Using Dependencies in Logic Hooks 567
Administration 568
Configurator | e 569
Core Settings | | e 571
Silent Installer Settings | | ., 699
Module Loader 708
Introduction to the Manifest 709
Module Loader Restrictions | 730
Module Loader Restriction Alternatives | ., 741
SugarOutfitters Package Guidelines ., 746
Module Builder 751
Best Practices | | . . e 755
QUOTES . . . 757
SugarBPM | 796
Extending SugarBPM (Process Manager) , .,c0vuuuu.... 803
Entry Points | e e 814
Creating Custom Entry Points 815
Job Queue . .. 816

5/2.508

Schedulers 817

Creating Custom Schedulers ... 819
Scheduler Jobs | L 820
Creating CustomJobs = e 822
Queuing Logic Hook Actions L 823
Access Control Lists 826
Teams 840
Manipulating Teams Programmatically 843
Visibility Framework e 848
TagsS 857
TNy MCE | 864
Modifying the TinyMCE Editor 869
SugarPDFE | e 871
DateTime 880
Shortcuts 889
Themes 894
Web Accessibility e 901
Validation Constraints 906
G 913
Performance Tuning i e 924
Sugar Performance L 924
PHP Profiling | e 927
Integrating Sugar With New Relic APM for Performance Management 928
Backward Compatibility 935
Enabling Backward Compatibility 937
Converting Legacy Modules To Sidecar _ , . .,0.uu... 941
Integration e e 942
Best Practices 942
Web Services 945
RE ST APL 946
Endpoints e 950
femodule> GET e e et 950

[smodule> POST 958
/<module>/:lhs sync key field value/link by sync keys/:link name/:rhs sync key field value DELETE ... 961

/<module>/:Ths_sync key field value/link by sync keys/:link name/:rhs_sync key field value POST 963
f<module>/:record DELETE e 964
/smodule>/record GET = = = 965
f<module>/record PUT L e 968
/<module>/irecord/audit GET = = = = = 971
f<module>/record/children GET L. 973
/<module>/:record/collection/:collection name GET 975
/<module>/:record/collection/:collection name/count GET 978
/<module>/:record/favorite DELETE - = = = L 979
f<module>/record/favorite PUT L e 981
/<module>/irecord/file GET = = = . 984
/<module>/record/file/:feld DELETE L. 987

6/2.508

/<module>/:record/file/:field GET

/<module>/:record/file/:field POST

/<module>/:record/file/:field PUT

/<module>/:record/link POST

/<module>/:record/link/:link name/add record list/:remote id POST

/<module>/:record/link/:link name/count GET

/<module>/:record/link/:link name/filter GET

/<module>/:record/movefirst/:target PUT

/<module>/:record/movelast/:target PUT

/<module>/:record/next GET

/<module>/:record/parent GET

/<module>/:record/path GET

/<module>/:record/pii GET

/<module>/:record/prev GET

/<module>/:record/vcard GET

/<module>/:root/tree GET

/<module>/Activities GET

/<module>/MassUpdate DELETE

/<module>/MassUpdate PUT

/<module>/config GET

/<module>/config POST

/<module>/config PUT

/<module>/count GET

/<module>/customfield/:field DELETE

71/2.508

/<module>/duplicateCheck POST

/<module>/enum/:field GET

/<module>/globalsearch GET

/<module>/globalsearch POST

/<module>/prepend/:target POST

/<module>/recent-product GET

/<module>/recent-product POST

/<module>/record_list POST

/<module>/sync key/:sync key field value PATCH

/<module>/sync _key/:sync key field value PUT

/<module>/temp/file/:field POST

/Administration/elasticsearch/mapping GET

/Administration/elasticsearch/queue GET

/Administration/elasticsearch/refresh/enable POST

/Administration/elasticsearch/refresh/status GET

/Administration/elasticsearch/refresh/trigger POST
/Administration/elasticsearch/replicas/enable POST

/Administration/elasticsearch/replicas/status GET

/Administration/elasticsearch/routing GET

1.138
1. 141
1.142
1.144
1.153
1.161
1.162
1.170
1.181
1.191
1.202
1. 205
1. 208
1. 209
1.210
1.211
1. 220
1.229
1. 230
1.231
1.232
1. 233
1.234
1. 236
1. 237
1.238
1. 240
1. 250
1.252
1.254
1.254
1. 255
1. 256
1. 257
1. 259
1.261
1.262
1. 263
1.263
1. 264
1. 265
1. 265
1. 266
1. 267
1. 268
1.278

8/2.508

/Administration/packages GET

/Administration/packages POST

/Administration/packages/:id/enable GET

/Administration/packages/:id/uninstall GET

/Administration/packages/:unFile DELETE

/Administration/packages/installed GET

/Administration/packages/staged GET

/Administration/portalmodules GET

/Administration/search/fields GET

/Administration/search/status GET

/Administration/settings/auth GET

/Calendar/invitee_search GET

/Calls POST

/Dashboards/<module> GET

/Dashboards/<module> POST

/Dashboards/Activities GET

/DataArchiver/:id/run POST

/Emails GET

/Emails POST

/Emails/:record/link/:link name/add_record_list/:remote_id POST

1.279
1. 280
1.281
1.282
1.283
1. 283
1.284
1.285
1. 286
1. 287
1. 287
1.289
1.290
1.291
1.295
1. 296
1. 297
1. 300
1.301
1. 302
1. 304
1. 305
1. 308
1. 317
1.322
1.325
1. 326
1. 327
1. 330
1. 333
1.334
1. 337
1. 340
1. 343
1.344
1. 345
1. 347
1. 349
1. 350
1.355
1.384
1. 387
1. 407
1. 407
1. 407
1. 408

9/2.508

/Emails/count GET

/Emails/filter GET

/EmbeddedFiles/:record/file/:field POST

/EmbeddedFiles/:record/file/:field PUT

/Employees GET

/ExpressionEngine/:record/related POST

/Filters GET

/ForecastManagerWorksheets/export GET

/ForecastManagerWorksheets/filter GET

/ForecastManagerWorksheets/filter POST

/ForecastWorksheets GET

/Forecasts GET

/Forecasts/:timeperiod id/:user id/chart/:display manager GET

/Forecasts/:timeperiod_id/progressManager/:user_id GET

/Forecasts/:timeperiod_id/progressRep/:user_id GET

/Forecasts/:timeperiod_id/quotas/direct/:user id GET

/Forecasts/:timeperiod_id/quotas/rollup/:user_id GET

/Forecasts/config POST

/Forecasts/config PUT

/Forecasts/init GET

/Forecasts/reportees/:user_id GET

/Forecasts/user/:user_id GET

/Genericsearch GET

/Genericsearch POST

/KBContents GET

/KBContents/:record/notuseful PUT

/KBContents/:record/useful PUT

/KBContents/config POST

/KBContents/config PUT

1. 408
1. 413
1.418
1.428
1.439
1. 449
1.450
1. 452
1.453
1. 461
1.463
1. 465
1.472
1.474
1.476
1.479
1.479
1.482
1.483
1.484
1. 486
1. 487
1.489
1.491
1.493
1.495
1.496
1.499
1. 500
1. 501
1.502
1. 503
1.504
1. 505
1. 506
1. 507
1.508
1. 510
1.510
1.512
1.514
1.522
1.528
1. 530
1.531
1.532

10/2.508

/KBContents/duplicateCheck POST

/KBContents/filter GET

/Leads POST

/Leads/:record/freebusy GET

/Leads/register POST

/Mail POST

/Teams/:record/link/:link name/:remote_id DELETE
/Teams/:record/link/:link name/:remote_id POST

[TimePeriods GET

1.533
1. 536
1.544
1. 544
1.548
1. 549
1. 550
1.554
1.555
1. 560
1.561
1. 562
1.563
1. 566
1. 567
1. 568
1.569
1.570
1.571
1.579
1.582
1. 583
1.584
1. 588
1.592
1.593
1. 601
1. 602
1. 603
1. 605
1.613
1. 658
1. 669
1.670
1.671
1.673
1.676
1.677
1.677
1.681
1. 687
1.691
1. 696
1. 704
1.704
1.705

11/2.508

/Users GET

/Users/:record/link/:link name/:remote_id DELETE

/Users/:record/link/:link name/:remote_id POST

/VCardDownload GET
/bulk POST

/globalsearch GET

/globalsearch POST

/help GET

1.713
1.721
1.721
1.722
1.728
1.732
1. 736
1.738
1.740
1.742
1.745
1.749
1.751
1.752
1.754
1. 757
1. 760
1.761

/integrate/<module>/:lhs sync key field name/:lhs sync key field value/link/:link name/:rhs sync key field

name/:ths_sync_key field value DELETE

1.761

/integrate/<module>/:1hs sync key field name/:lhs sync key field value/link/:link name/:rhs sync key field

name/:ths_sync_key field value POST

/me PUT

/me/preference/:preference name DELETE

/me/preference/:preference name GET

/me/preference/:preference name POST

/me/preference/:preference name PUT

/me/preferences GET

/me/preferences PUT

1.763
1.765
1. 766
1.768
1.769
1.770
1.772
1.774
1.775
1.778
1.779
1.780
1.782
1.783
1.784
1.785
1. 786
1.787
1.788
1.788
1.789
1.790
1.790
1.791
1.792

12/2.508

/oauth2/bwc/login POST

/oauth2/logout POST

/pmse_Inbox/changeCaseUser/:cas_id GET
/pmse_Inbox/clearLog/:typelog PUT

/pmse_Inbox/engine_claim PUT

/pmse _Inbox/engine route PUT

/pmse_Inbox/filter GET

/pmse_Inbox/getLog GET

/pmse_Project/ActivityDefinition/:record GET

/pmse_Project/ActivityDefinition/:record PUT

1.793
1.794
1.794
1.796
1.799
1.799
1. 800
1. 801
1. 809
1. 809
1.810
1.818
1.821
1. 822
1.823
1. 827
1. 830
1.831
1.831
1.831
1.831
1.831
1. 832
1. 836
1. 838
1.839
1. 839
1. 840
1. 840
1. 841
1. 844
1. 845
1. 846
1. 847
1. 847
1. 848
1. 849
1. 850
1.851
1. 852
1.854
1.854
1. 862
1. 862
1. 863
1.871

13/2.508

/pmse_Project/CrmData/:data/:filter GET

/pmse_Project/CrmData/:record/:filter PUT

/pmse_Project/EventDefinition/:record GET

/pmse_Project/EventDefinition/:record PUT

/pmse_Project/GatewayDefinition/:record PUT

/pmse_Project/file/project import POST

/pmse_Project/project/:record GET

/pmse_Project/project/:record PUT

/search GET

/theme GET

/theme POST
MethOdS II

get report entries

get report pdf

get server info

login

1.873
1.875
1.876
1.879
1. 883
1.884
1. 885
1. 887
1. 898
1. 899
1. 901
1. 907
1. 909
1.912
1.913
1. 915
1.928
1. 933
1. 936
1. 937
1. 937
1. 939
1. 940
1.942
1.944
1. 946
1. 950
1.951
1.952
1. 956
1. 957
1. 958
1. 960
1.962
1. 964
1. 965
1. 968
1. 970
1.971
1.972
1.973
1.974
1. 975
1.977
1.978
1.979

14/2.508

logout

set campaign merge
set document revision

set entries

set_entry

set note attachment

set_relationship

set relationships

snip_import_emails

snip update contacts

REST Release Notes
SOAP Release Notes

Migration
Migrating From On-Site to SugarCloud
Migrating From SugarCloud to On-Site
Migrating From SugarCloud to On-Site
Migrating From a Broken Instance to a Clean Install
Importing Records

Importing Email Addresses

Security

Endpoints and Entry Points
Web Server Configuration

XSS Prevention

Cookbook

Adding Buttons to the Application Footer
Adding Buttons to the Record View
Adding Field Validation to the Record View
Adding an Existing Note to an Email as Attachment
Adding the Email Field to a Bean
Changing the Default Module When Logging a New Call or Meeting
Converting Address' Country Field to a Dropdown
Creating Custom Field Types
Creating an Auto-Incrementing Field
Customizing Prefill Fields When Copying Records
Customizing the Email Editor Buttons
Customizing the Start Speed of List View Search
Disabling RLI Alerts on Opportunities
Disabling Tooltips
Dynamically Hiding Subpanels Based on Record Values
Enabling Importing for Custom Modules

1.982
1.983
1.984
1.985
1.988
1.989
1.991
1.993
1. 995
1. 997
2. 000
2.003
2.004
2. 005
2. 007
2.010
2.012
2.021
2.021
2.023
2.028
2.032
2.034
2.034
2. 040
2.040
2.042
2.052
2. 055
2. 055
2. 058
2.078
2. 090
2.093
2.108
2.111
2.115
2.130
2.133
2.135
2.138
2.140
2.141
2.142
2. 145

15/2.508

Increasing the Number of Dashboards Displayed in the Home Menu

Logic Hooks

Comparing Bean Properties Between Logic Hooks
Preventing Infinite Loops with Logic Hooks
Modifying Calendar Item Colors
Modifying Layouts to Display Additional Columns

Modifying Subpanel Buttons
Module Loadable Packages

Creating an Installable Package for a Logic Hook
Creating an Installable Package That Copies Files
Creating an Installable Package that Creates New Fields

Removing Files with an Installable Package

Passing Data to Templates

Web Services
REST API
Bash

Prepopulating the Compose Email View
Refreshing Subpanels on the RecordView
Removing the Account Requirement on Opportunities

How to Manipulate File Attachments

How to Fetch Related Records

How to Authenticate and Log Out

How to Ping

How to Fetch the Current Users Time
How to Fetch Recently Viewed Records
How to Use the Global Search

How to Check for Duplicate Records

How to Manipulate Quotes

PHP IIIIIIIIIIIIIIIIIIIIIIIII

How to Favorite a Record

How to Manipulate File Attachments

How to Fetch Related Records

2.147
2. 150
2.150
2.152
2.158
2.163
2.165
2.168
2.168
2.176
2.178
2.182
2.184
2.185
2.188
2.191
2.194
2.194
2.194
2.194
2.199
2.201
2. 205
2. 209
2.218
2.227
2.228
2.232
2.234
2.235
2.237
2.238
2.238
2.248
2.258
2. 265
2.273
2.283
2.283
2.291
2.295
2. 300
2. 307
2.318
2. 330
2.333

16/2.508

How to Unfollow a Record

How to Authenticate and Log Out

How to Ping

How to Fetch Recently Viewed Records

How to Use the Global Search

REST

SOAP
C#

Retrieving a List of Records With Related Info

Retrieving Email Attachments

2. 339
2.341
2. 344
2.348
2. 350
2.352
2. 363
2.375
2. 383
2.398
2.411
2.412
2.412
2.412
2.416
2.419
2.422
2.425
2.428
2.434
2.442
2.446
2.451
2.460
2.471
2.475
2.494
2.498
2.503
2.503
2. 503
2. 506

17/2.508

Sugar Developer Guide 12.0

The Sugar Developer Guide describes how to configure and customize Sugar by
making code- and database-level changes to the Sugar file system. You will need
direct access to the server along with the proper file-system permissions to alter
files in the Sugar instance directory.

Sugar customers that are hosted on Sugar's cloud service cannot directly access
their database's file system but can work with a Certified Sugar Partner to
customize their Sugar deployment. For a list of Certified Sugar Partners, please
refer to the Partner Page to find a reselling partner to help with your development
needs.

Introduction

Overview

The Sugar Developer Guide is an essential resource for developers who are new to
Sugar or to CRM and web-based applications. It describes how to configure and
customize the Sugar platform for a broad range of tasks applicable to any
organization that has a need to manage business relationships with people.

Prerequisites

Using and understanding the documentation contained in the Sugar Developer
Guide requires basic programming and software development knowledge.
Specifically, you should be familiar with the PHP general-purpose scripting
language and the SQL programming language for accessing databases.

Understanding Sugar's Framework

Designed as the most modern web-based CRM platform available today, Sugar has
quickly become the business application standard for companies around the

world. The Sugar application framework has a sophisticated extension model built
into it, allowing developers to make significant customizations to the application in
an upgrade-safe and modular manner. It is easy to modify the core files in the
distribution; you should always check for an upgrade-safe way to make changes.
Educating developers on how to make upgrade-safe customizations is one of the
key goals of this Developer Guide. For more information on Sugar's structure,
please review the architecture section.

Supported Platforms

18/2.508

http://www.sugarcrm.com/partners/reselling-partners

Originally, Sugar® was written on the LAMP stack (i.e. Linux, Apache, MySQL,
and PHP), but has since added support for every operating system on which the
PHP programming language runs, for the Microsoft IIS web server, and for the
Microsoft SQL Server, IBM® DB2®, and Oracle databases. For more information
about supported software versions and recommended stacks, please refer to the
main Supported Platforms page.

Sugar Products

Sugar has several CRM products available: Sugar Sell, Sugar Serve, Sugar
Ultimate, Sugar Enterprise, and Sugar Professional, which are all sold under a
commercial subscription agreement. These products are developed by the same
development team using the same source tree with different modules and features
available depending on the product. A comparison of each product's features is
available in the License Types Matrix documentation of the Administration Guide.

Basic Development Rules for Sugar Products

Unless SugarCRM has given you express permission to do so, the following are
what not to do when you are configuring, customizing or modifying this Sugar
product:

e Do not remove or alter any SugarCRM or Sugar copyright, trademark or
proprietary notices that appear in the Sugar products.

e Do not "fork" the Sugar software (e.g., take a copy of source code from this
product and start independent development on it, creating a distinct and
separate piece of software).

e Do not modify, remove or disable any portion of SugarCRM's "Critical
Control Software."

e Do not combine or use the Sugar products with any code that is licensed
under a prohibited license (e.g., AGPL, GPL v3, Creative Commons or
another similar license that would "taint" the Sugar products and require
you to share the source code for this product with a third party).

e Do not use any part of the Sugar products for the purpose of building a
competitive product or service or copying its features or user interface.

Development Tools

Sugar has a set of built-in tools that you can use to your advantage when
troubleshooting or developing.

19/2.508

https://support.sugarcrm.com/resources/supported_platforms/
https://support.sugarcrm.com/smartlinks/administration_guide/licenses/license_types_matrix/

Developer Mode

Developer Mode will allow for Sugar to recompile cached files when the page is
reloaded. The following file types are rebuilt:

e Handlebar Templates (.hbt)
e Smarty Templates (.tpl)
e JavaScript Controllers (.js)

When Developer Mode is enabled, The Sidecar JavaScript library references the
full JavaScript files located in ./sidecar/ rather than the concatenated and minified
cached versions. You can turn on Developer Mode by navigating to Admin >
System Settings. For more information, please refer to the System documentation.

Note: This setting should remain off unless developing because it will degrade
system performance.

Diagnostic Tool

When troubleshooting issues, you may find the diagnostic tool to be helpful. This
tool will export a zipped package containing the requested diagnostics and is
available even if you are hosting your instance on Sugar's cloud service.

The diagnostic tool has the ability to export the following:

SugarCRM config.php
SugarCRM Custom directory
phpinfo()
MySQL - Configuration Table Dumps
MySQL - All Tables Schema
MySQL - General Information
MDS5 info

o Copy files.md5

o Copy MD5 Calculated array
e Beanlist/BeanFiles files exist
e SugarCRM Log File
e Sugar schema output (VARDEFS)

You can use the diagnostic tool by navigating to Admin > Diagnostic Tool. For
more information, please refer to the System documentation in the Administration
Guide.

Composer

20/2.508

https://support.sugarcrm.com/smartlinks/administration_guide/system/hdr_advanced/
https://support.sugarcrm.com/smartlinks/administration_guide/system/hdr_diagnostic_tool/

When building applications, some developers prefer to use Composer to manage
their external dependencies and make them more intuitive. For more information,
please refer to the Composer documentation.

Development Methodology

Overview

This page discusses standard practices that we recommend for improving the
success rates of Sugar development projects.

Development Best Practices

When developing Sugar® customizations as part of an on-site CRM project
implementation, we recommended placing the entire Sugar application filesystem
under source code management. Sugar developers know that customizations made
to Sugar are placed under the ./custom/ directory. But during the lifecycle of a
CRM implementation, you will need to upgrade Sugar versions, which will change
core files. Many projects will also need to track other related project files that may
not all be Sugar platform code. For example, pre-flight SQL scripts, data migration
scripts, Web server configuration settings, etc.

For SugarCloud projects and ISVs, if you are building a custom module package or
integration designed to be installed into many Sugar instances (including
SugarCloud instances), then tracking only ./custom/ directory files should be
enough.

Using .gitignore Files

Today, many developers choose to use Git as their source control management.
There are certain Sugar application files that you do not want to track; most of
these are generated files that are created at runtime or are Sugar instance-specific
configuration files.

Below is a sample .gitignore file that you can use or adapt to the source control
management system of your choice.

*. 1 og
/. ht access
/ config. php

21/2.508

https://git-scm.com/

[config_override. php

/ cache

[upgr ades/ nodul e

/ upl oad

[cust oni bl owfi sh

/ cust ont hi story

[cust ont appl i cati on/ Ext

/ cust oni nodul es/ */ Ext

[cust onf Ext ensi on/ **/ *or der Mappi ng. php

Recommendations for Development Teams

Code quality is important to maintain because Sugar customizations run in the
same environment as the rest of the Sugar application. Here are a few best
practices to help development teams uphold code quality.

e Adopt an appropriate Git workflow for development. For reference, see
Atlassian's tutorial on Git workflow options.

e Develop within feature branches that are tested before being merged back
into master to keep master stable.

e Avoid workflows that involve developers committing directly into the
master branch to prevent code destabilization.

e Development teams should always perform code reviews before merging in
new code.

Deploying Sugar Code

Where you plan to deploy Sugar code is the biggest factor in determining how
Sugar code should be deployed and how your project should be managed.

Are you working on a Sugar project for an on-premise Sugar implementation? Are
you working on a custom module that you plan on distributing through
SugarExchange? Are you planning a solely REST API integration? The answers to
these questions guide how you should develop and deploy Sugar code.

e Sugar on-site projects : Develop these customizations using the exact
version and flavor of Sugar that you plan to use in production.

e SugarCloud projects : Develop these customizations on the latest
available version of Sugar for the particular flavor the customer has
purchased.

e Custom modules or integrations : If you plan on distributing your
customization to many Sugar customers via SugarExchange or channel
partners, design your customization with Sugar's cloud service in mind.

o Sugar's cloud service is more restrictive than our on-site installs

22/2.508

https://www.atlassian.com/git/tutorials/comparing-workflows
https://sugarexchange.sugarcrm.com/home

regarding supported customizations.

o A customization designed for Sugar's cloud service can be
supported in Sugar on-site instances, but the inverse is not always
true.

For more information on Sugar's cloud service restrictions, please refer to the
SugarCloud Policy Guide.

Packaging

The packaging of customizations is not a concern for many Sugar projects. Many
projects just use Git (or some other file version control) to manage the distribution
and deployment of Sugar code customizations. However, there are situations
where the packaging of Sugar customizations is necessary.

If you plan on distributing Sugar custom code, then you must package your
customization as a Module Loadable Package (a .zip file that includes all custom
code along with a manifest file). It is easy to write a script to build a module
loadable package either from custom directory content or by extracting
customizations out of a development environment. See examples on Github here
and here.

Note: Sugar Sell Essentials customers do not have the ability to upload custom file
packages to Sugar using Module Loader.

In some Enterprise environments, changes are tightly controlled, and ownership of
various Sugar application components may be spread across multiple teams,
requiring a coordinated deployment. For example, a Database Administrator (DBA)
may be responsible for implementing database schema (DDL) changes and a
System Administrator may be responsible for implementing file system changes.

For these situations:

File system changes can be accounted for using Git to determine the difference
between current production state and the latest changes to be deployed.

DDL changes can be accounted for via deploying latest file system changes on a
clone of Sugar production instance and running Quick Repair command. Sugar will
prompt you with any DDL changes that need to be made that you can then capture
and share with your DBA.

Data Manipulation Language (DML) changes, if necessary, should be managed
within SQL or PHP scripts.

Deployment

23/2.508

https://support.sugarcrm.com/resources/sugar_cloud_policy_guide/
https://github.com/sugarcrm/BuildingBlocks/tree/master/packages
https://github.com/sugarcrm/examples/tree/master/duckduckgo
https://support.sugarcrm.com/knowledge_base/administration/troubleshooting/performing_a_quick_repair_and_rebuild/index.html/

If using the traditional Git-based deployment, then deploying new Sugar code is as
easy as checking out the latest branch and then running Quick Repair and Rebuild.
Run the quick repair from the Sugar user interface, or script it for fully automated
deployment.

When deploying to an instance on Sugar's cloud service, it is necessary to
install the package manually using Module Loader. It is not possible to automate
the deployment of packages into instances on Sugar's cloud service.

In a coordinated deployment, database changes should be deployed first, followed
by filesystem changes, followed by a Quick Repair (if permitted) to clear system
caches. You can clear caches manually by deleting the contents of the ./cache/
directory and then truncate the metadata cache table in the Sugar database. The
Sugar application regenerates these caches as needed.

Using Sugar Studio to deploy changes into new environments (especially
Production) is not recommended. Manually re-creating customizations using the
Studio user interface can be error-prone. It also runs the risk

of inadvertently overwriting other code customizations. It may be initially slower to
create a custom field, etc. manually using extensions on filesystem but, in the long
run, you benefit from better change management and automation.

Managing Multiple Environments

CRMs are business-critical applications so development should never be performed
directly on your production environment. A typical Sugar project involves multiple
staging environments as well as individual development environments that each
Sugar developer uses for actual coding.

SugarCRM recommends 4 different environments:

e Production environment : used by real users

e User Acceptance Test (UAT) environment : used by business
stakeholders to sign off on changes that go into production

e Quality Assurance environment : used for test and validation of new
features and bug fixes

e Development environments : used by individual Sugar developers to
create and test code (often running on a local laptop or PC)

Code changes that flow upstream from a development environment should not be
allowed into production without going through quality assurance (QA) and user
acceptance testing (UAT) first. The intermediate environments serve as gates
between development and production that help intercept problems before they
reach production.

24 /2.508

https://support.sugarcrm.com/knowledge_base/troubleshooting/performing_a_quick_repair_and_rebuild/index.html/
https://github.com/sugarcrm/uncon/blob/2015/sugar_repair/sugar_repair
https://support.sugarcrm.com/smartlinks/administration_guide/developer_tools/module_loader/

User and CRM data that needs to flow downstream from production environment
should pass through intermediate environments as well to ensure consistency and
that it is cleaned or anonymized of any personally identifiable or sensitive
information.

Consistency

Maintaining as much consistency as possible for each of these environments is
essential. Inconsistent environments can create issues where bugs are
reproducible in one environment and not others (for example, a bug that only
appears in production). Many times, these bugs are traced to configuration
parameters that are not directly related to Sugar or the features and
customizations under development.

To replicate your production environment as accurately as possible, we
recommend you use VM or container technology in your development and QA
environments.

Your UAT environment should match the infrastructure of your production
environment.

SugarCRM uses a variety of container technologies in developing the core Sugar
application and for working on Sugar projects. In particular, we use Virtual Box,
VMWare, Amazon AMIs, Docker containers, Vagrant, and Packer. SugarCRM
Engineering also uses Puppet to centrally manage the provisioning and
configuration of all these different environments.

Testing

SugarCRM recommends using a variety of testing methods to ensure the quality of
your Sugar project. Perform unit testing, functional testing (either manual or GUI
automation), system integration testing, user acceptance testing, and performance
testing.

e Unit testing should be applied to ensure that even the smallest code units
within your application are behaving as expected.

e Functional testing should be performed to ensure that each feature and
function behaves the way it was designed.

e System Integration testing should be performed to ensure that Sugar co-
exists with external systems and that data flows between all these systems
successfully.

e User acceptance testing should be performed by key stakeholders to
ensure that your project is meeting business requirements.

e Performance testing should be performed to ensure that the Sugar
application's responsiveness meets user expectations and that the

25/2.508

application continues to scale.

In our experience, neglecting any of these tests can negatively impact a Sugar
project in terms of maintainability, customer satisfaction, and business success.

In the next section, we introduce some tools and open-source resources that can
help you start a QA practice for your project.

Sugar Test Tools

For Sugar customers and partners, SugarCRM provides Test Tools that can be
used to verify and perform quality assurance on Sugar customizations. Use of
Sugar test technology requires familiarity with PHPUnit for PHP unit testing,
Jasmine for JavaScript unit testing, and Apache JMeter for performance load
testing.

Sugar Unit Tests

The Sugar Unit Test suites are the automated unit tests developed and maintained
by SugarCRM Engineering during the process of building and releasing each new
Sugar release. As part of our development process, these tests are required to run
"green" (100% passing) at all times on each master release branch. Essentially,
these tests form a regression test suite for an uncustomized version of Sugar
running in our controlled build environment.

With that understanding, here is a recommended approach to take advantage of
these unit tests.

e Run test suite against an uncustomized copy of Sugar in your development
environment to establish a baseline. Not all tests may immediately pass;
some may fail due to configuration differences between your development
environment and SugarCRM Engineering's controlled build environment.

e Correct any observed failures or skip/remove the failing tests to create a
base test suite that is 100% passing.

e As you develop customizations on Sugar, ensure that your base test suite
continues to pass.

e Create new tests for new code customizations that you create.

Sugar Performance Tests

Instead of sanitizing data from a production environment for purposes of load
testing, SugarCRM provides an open source tool called Tidbit that can be used to
generate pseudo-random data to populate a Sugar instance with representable
data.

26/2.508

https://sugarclub.sugarcrm.com/dev-club/w/dev-tutorials/199/sugar-developer-tools/
https://phpunit.de/
http://jasmine.github.io/
http://jmeter.apache.org/
https://github.com/sugarcrm/Tidbit

We also provide Apache JMeter scenarios to Sugar customers and partners who
request access. These JMeter scenarios can be used to drive a simulated load
against the Sugar REST API interface used by Sugar. They can validate that your
customizations have not had an unexpected impact on the performance of a Sugar
instance.

DevOps

In order to facilitate and streamline development processes, Sugar recommends
implementing DevOps automation. Use a tool such as Jenkins to orchestrate test
automation, stage changes in any environment (dev, QA, UAT, and prod) for
manual verification, and manage the promotion of changes from one environment
to the next.

Perform automated tests (e.g. unit tests) on each commit.

Stage development changes on at least a nightly basis for use by QA or
demos.

Automate the rollback of changes in any environment as needed.
Automate notifications to affected and responsible parties whenever a test
fails, or a build fails to deploy.

Co-Existing with Studio Customizations

Sugar Studio and Module Builder enable administrator users to implement quick
changes to a Sugar environment. But Sugar Studio lacks the rigorous change
control that larger CRM projects need. Sometimes, Studio changes can even break
code-level Sugar customizations. For this reason, we often discourage using Studio
on heavily customized Sugar instances.

However, if Sugar Studio is an important up-front requirement for a CRM project,
then there are strategies you can adopt for your customizations to avoid conflicts.

Sugar Studio can be used to modify the layouts, fields, and relationships for the
majority of modules in Sugar. Module Builder can be used to define new modules
along with their layouts, fields, and relationships. In practice, this means that the
fields and layouts for any module's record view, list view, mobile view, and
subpanels can be customized using simple administration tools.

Studio users, therefore, could potentially break code customizations that are
reliant on a particular field or having a field on a particular layout or location.
Here are some practices to avoid conflicts between Studio customizations and
custom code:

e Avoid custom record, list, and subpanel view controllers because Studio
users can change fields and layouts that affect expectations within your

27/2.508

https://jenkins-ci.org/

controller code.

e Avoid custom record validations because Studio users can change fields
and layouts that affect expectations within your validation code.

e Avoid hard-coded integrations that rely on a particular field because Studio
users can change fields that affect expectations within your integration.

e Avoid new field and relationship vardefs customizations because Studio
users can create new fields and relationships.

e Avoid viewdefs customizations for record, list, and subpanel layouts
because Studio users perform these customizations.

Many customizations have a smaller risk of side effects related to Studio
customizations. Here is a list of some changes that administrator users cannot
perform via Studio:

e Adding custom dashlets

e Adding custom layouts or additions to footer or header

e Adding custom actions in record view action dropdown

Adding metadata-aware integrations that discover fields and modules on
the system

Adding logic hooks

Conversely, certain customizations can provide Studio users with additional tools:

e Adding custom Sugar Logic functions
e Adding custom Sugar field types

Composer

Overview

Composer dependency management is the de facto standard for managing PHP
dependencies. Sugar platform ships with all required code bundled and optimied
together for our developers. The installer will, however, deploy both composer.json

and composer.lock in the web root directory as a reference of all dependencies
which are controlled by Composer.

Autoloader

Sugar has a custom autoloader that is PSR-0 and PSR-4 compliant and integrates
with Composer's mapping definitions.

Integrations

When updating the Composer configuration, Composer will generate different

28/2.508

http://www.php-fig.org/psr/psr-0/
http://www.php-fig.org/psr/psr-4/

mappings based on the settings of every dependency:

e Class map

e PSR-0 map

e PSR-4 map

e Include paths (deprecated)

SugarCRM's autoloader uses those generated maps directly to initialize itself and
to figure out how to load different classes.

Internals

To prevent endless file stats, Sugar's autoloader maintains a full list of all files at
its disposal. This list is only generated once and is maintained in

.Jcache/file map.php. Most of the Sugar codebase uses the autoloader to determine
whether a file is available rather than performing expensive file exists calls.

A second file, stored in ./cache/class map.php , maintains a flat list of class-name-
to-file mappings. When you make any changes to the file system, clear both files
before testing new code.

Optimization

When updating dependencies through Composer, Sugar team uses the optimize
flag: composer update --optimize-autoloader --no-dev". By doing so, Composer will
scan all files in the packages it manages and create a full list of PSR-0 and PSR-4
class name to file mappings, instead of performing this lookup on the fly by the
autoloader itself on runtime.

Frequently Asked Questions
Is the composer package required to install a Sugar instance?

No. The Sugar installer ships with all required code bundled together. The installer
process does not execute any Composer commands. The installer will deploy both
composer.json and composer.lock in the web root directory as a reference of all
dependencies which are controlled by Composer.

Why does Sugar ship ./composer.json and ./composer.lock if the installer
doesn't rely on them?

Composer is used internally during development to manage Sugar's dependencies
on third-party libraries and packages. The Composer files are shipped during
development to manage Sugar's dependencies on third-party libraries and
packages. The composer files are shipped with the product to give our customers

29/2.508

the ability to expand from them.
Is the Composer package required to upgrade a Sugar instance?

No. The Sugar upgrader ships, just like the installer, with all required code
bundled together. The upgrade process will validate the present Composer
configuration and verify if it is compatible with the upgrade. In the case of a
custom configuration, the upgrade process will report any issues which need to be
resolved by the system administrator before the upgrade can proceed.

Why are there no wildcards in the version constraints? Doesn't
composer.lock keep track of exact version numbers?

The lock file is designed to lock the dependencies to a specific version, but to
protect our customers from unintentionally pulling in newer versions of
dependencies owned by SugarCRM, we have chosen to use explicit version
numbers in the composer.json file too.

May I change the version number of a package?

You cannot change version numbers for packages added by Sugar. Sugar will
always configure exact version numbers for all of its dependencies. Changing these
version numbers will result in an unsupported platform. The version constraints of
packages not owned by Sugar may be modified at the developer's discretion.

Can I use Composer's autoloader?

We strongly recommend against using Composer's autoloader. The Sugar
autoloader is fully compatible with the PSR-0 and PSR-4 autoloading
recommendations from PHP-FIG, which makes the registration of an additional
autoloader like the one from Composer redundant. Sugar's autoloader consumes
the different mappings which are generated by Composer directly.

How can I optimize the autoloader?

Sugar ships with an optimized class map out of the box, which is pre-generated
through Composer. This class map contains all different class to file mappings
known to the dependencies managed by Composer. When customizing the
Composer configuration, it is sufficient to run composer update --optimize-
autoloader which will refresh the class map. SugarCRM's autoloader takes full
advantage of this optimization.

Can I load customizations in Sugar through Composer?

Although not yet available out of the box, we are investigating this as a future
capability.

30/2.508

http://www.php-fig.org/psr/psr-0/
http://www.php-fig.org/psr/psr-4/

Can I move the vendor directory out of the web root?

You cannot currently move the vendor directory, but we are investigating this as a
future capability.

The Composer integration in Sugar is not flexible enough for me. What
can I do?

We continuously strive to make our platform better and to facilitate both end users
and developers. Our goal is to deliver a state-of-the-art environment. Do not
hesitate to reach out to Sugar Support if we have overlooked your use case or if
there too many constraints in the current implementation to make this a useful
feature.

Delivery and Deployment Guide for Enterprises

Overview

SugarCRM Professional Services has a set of best practices for managing
instances, delivering upgraded customizations, and deploying those upgraded
customizations into Sugar on-site for our Enterprise customers. The following is an
example of deployment practices used by SugarCRM Professional Services team
when engaged on Enterprise Sugar development projects. It does not list all
possible customizations that can be made in the system, it is intended to be used
as a guide for how to automate the deployment of certain types of customizations
into an on-premise Sugar instance. The techniques below cannot be used

with Sugar's cloud service.

Deploying Application Configuration and Metadata
Use Case: Deployment of System Settings

System settings are stored in various places. In this section, we will address each
type of storage for settings, and how to migrate each.

Storage types:

e config override.php
o This is a file stored in the Sugar root directory that allows for
overriding core config values (found in config.php). In the UI, the
main place to make changes to this is via Admin -> System Settings
e database 'config' table
o It is loaded, used, and accessible throughout the Sugar application
through the Config API.

31/2.508

o

System Tab Settings

Forecasting Settings

Portal Settings

This is a simple key/value/category store. There aren't too many
components that use this. Here are some:

o

o

o

config_override.php
System considerations:

e File System:
o config override.php is placed in Sugar web root directory
e Scripts required
o PHP
= You will need to write a script to read the current
config override.php and merge the existing array with the
new values you'd like to change. This can be done one time,
and re-used for all future config override.php changes

Steps to migrate:

1. Assess the values to be changed, added, or removed
2. Write a script to read the existing config override.php, make the changes
to the array, and re-write the file back to the system.

database ‘config' table
System considerations:

e Database:
o The 'config' table stores all these values. They are stored in a very
simple table schema.
e Scripts required
o PHP
= Write a simple PHP script to use Sugar object API. See
Figure 1

Steps to migrate:

32/2.508

1. Write script to use our object API for config table changes (See Figure 1)
2. Copy script to Sugar root directory

3. Execute the script

4. Remove the script

Screenshots:

Figure 1:

1 -
]

BeanFactory: :getBean

saveSetting

Use Case: Deployment of Reports

The customer creates a report in the Reports module. They would like to deploy
that report so that end users can all access and run it.

System considerations:

e Database

o Row is inserted into the Reports module (saved reports table)

o (For new team combinations) Row is inserted into the team_sets
table

o (For new team combinations) Rows are inserted into the
team sets teams table

e Scripts required
o SQL
= Retrieve the relevant rows (saved reports, team_sets,
team sets teams) and create a SQL script to insert them.

Additional notes:

e In the System considerations section, "new combination of teams" means
that when creating the report, the end user created the Report with a set of
teams that doesn't exist on any other record. This results in new entries in
the team sets and team sets teams tables.

Steps to migrate:

33/2.508

—_

. Build a report in the dev instance
2. Select the database rows associated with that report (saved reports,
possibly team sets and team sets teams tables)
1. example: "SELECT * FROM saved reports WHERE id =
'REPORT ID"
. Export the row/rows into a SQL file
. Execute on the next system

AN

Use Case: Deployment of Dashboards

The customer wants to deploy the pre-built dashboards in an automated way. See
Figure 1 below. This example has two dashboards, "Help Dashboard" and "My
Dashboard". Each dashboard has zero or more dashlets.

System considerations:

e Database:
o Row is inserted into the dashboards table for each user dashboard.
The metadata column stores all the dashlets associated with that
dashboard, and the assigned user id column stores the user who
will see this dashboard.
e Scripts required
o PHP
= After deploying the dashboards you will need to run
the Quick Repair and Rebuild script found in the admin
section.
= Custom scripts: YES (if applying to multiple users)

e Because users and id are dynamic, if applying to
multiple users, you will need a custom script to
retrieve those user ids and set them for each sql
insert.

o SQL
= Script required to import the entry from
the dashboards table.

Steps to migrate:

1. Build a dashlet against a specific user
2. Select the database rows associated with that user
1. example: "SELECT * FROM dashlets WHERE assigned user id =
'USER ID"
3. Pick the dashboard you'd like to apply to other users, and export it into a
SQL file
4. Decide what set of users you need to create the dashboard for.

34/2.508

5. Write a script to pull that list of users, dynamically set the assigned user id
and id (id must be unique) with the insert query you exported in step 3, and
run for each one of those users.

Screenshots:

Figure 1

Accounts Contacts Opportunities Leads Calendar

Create Dashboard

Activity Stream

Help Dashboard A O Pi
My Dashboard Tl
)grade training, videos, classes, webinars

RLI for Child

Test Account

© 06 0 B B 0O+

Test Opportunity iive, and share ideas with other users
To

More recents
. Tl
u Learn the details of how Sugar works and engage with support

Recent Tweets - @sugarcrm A D

Use Case: Deployment of Roles

The customer wants to deploy the roles in an automated way. This includes
creating new roles and updating previously existing roles.

System considerations:

e Database:
o Row is inserted into the acl_roles table for each role setting.
Depending on how specific the role is, we might
have acl fields and acl_actions mapped to roles
through acl_roles_actions
e Scripts required
o PHP
= Sugar has a SugarACL object API that can be used to create,
read, and write roles and role definitions.

35/2.508

Steps to migrate:

1. Write a script using our object API to create or write roles
1. Define the metadata for the changes or additions to be made
2. Write logic to add/update based on metadata

2. Execute script on dev instance and confirm changes

3. Use script to promote to next instance

4. Note: See functional sample script below
1. https://gist.github.com/sadekbaroudi/3191513e2bbce2170326

Use Case: Deployment of Teams

The customer wants to deploy the teams in an automated way. This should be
done via the Sugar object APIL.

System considerations:

e Scripts required
o PHP
= Follow steps in "Additional Notes" section below for details
on building Team scripts.
= TeamSets are cached per user by SugarCache. SugarCache
should be cleared after installing new teams.

Additional notes:
To build a script to do this, see the following:

e modules/Teams/Save.php
o This file is called when a user posts data through the form in the UI.
This code should be replicated (until the Teams module is
refactored).
e modules/Teams/Team.php
o function save() - this should be called as part of the save
o function mark deleted() - this should be called on the object when
you want to delete a team, be sure to make sure there are no
related users before doing so.

Steps to migrate:

1. Write a script using our Teams object API
1. Create needed team object
2. Set appropriate data on object and/or POST data
3. After saving, potentially add users to the team

36/2.508

https://gist.github.com/sadekbaroudi/3191513e2bbce2170326

2. Execute script on dev instance and confirm changes
3. Use script to promote to next instance

Use Case: Deployment of User Settings

The customer wants to deploy the user settings in an automated way. There are a
couple of places where we store User settings.

Storage types:
e User Preferences

This is a key value pair with a serialized and then base64 encoded value. We store
many user preferences, all encoded. These are non-critical settings, and can be
blown away. However, doing so will require the user to reconfigure their
preferences. The data is stored in the user preferences table. This includes data
such as: Subpanel display order, Timezone preferences, etc.

e Users module settings

These are direct values on the Users module (users table). Here we track
persistent User attributes such as: Address, Phone number, etc

User preferences
System considerations:

e Database:
o Row is inserted into the user_preferences table for each user
setting change.

e Scripts required
o PHP
= In order to update values with a user's preferences, you
would need to write a custom script to read, update, and
rewrite to the user preferences table

Steps to Migrate:

1. Write a script using our User Preferences API
1. Query the database to retrieve the row for a given user
2. base64 decode the value
3. unserialize the value
4. update the data required

37/2.508

serialize the data

base64 encode

rewrite the row to the database

(repeat for all applicable users)

(See modules/UserPreferences/UserPreference.php or
modules/Users/User.php, specifically getPreference() and
setPreference())

Load the User object

Call getPreference for the specified value

Make changes

Call setPreference for the specified value

Better performance method (direct database queries and updates):
More robust, but slower performance method (API):

moONo U

N~ O WN

User table

System considerations:

e Database:
o Users table is updated
e Scripts required:
o SQL
= You can directly update the Users table directly, provided
the data is not encoded or encrypted (like password).

Steps to Migrate:
1. Write a SQL script to update values in the users table based on need

2. Execute script on dev instance and confirm changes
3. Use script to promote to next instance

Use Case: Deployment of custom fields

A user wants to deploy custom fields created in an automated way. This includes
anything created through Studio.

System considerations:

38/2.508

e File System:
o Files are potentially created in the following directories:
= Custom field vardef:
custom/Extension/modules/<module name>/Ext/Vardefs/sug
arfield <field name>.php
= Custom field label (and app list string if necessary): ./custo
m/Extension/modules/Accounts/Ext/Language/en _us.lang.ph

p
e Database:
o The <module name> cstm table is created, if it doesn't already
exist.

o The field <field name> c is created against that table

e Scripts required
o A Quick Repair and Rebuild is required after copying the files and
fields meta data table values.
o SQL
= You will need to insert the relevant entries from the
fields meta data table

Steps to migrate:

1. Export the fields meta data entries for the custom fields into a script
2. Copy the files for the custom fields
3. Apply #1 and #2 to another system, and execute a Quick Repair and
Rebuild
1. Execute the DDL generated by the QRR above

Use Case: Deployment of custom modules

A developer creates a custom module and wants to deploy it, this use case refers to

a basic module, because each additional feature (logic hooks,

relationships,dependencies, etc) has its own deployment scenario.

System considerations:

e File System:
o ./custom/Extension/application/Ext/Include/<package name>.php
o ./modules/<new _module>/*
o ./custom/modules/<new_module>/*
o ./custom/themes/default/images/*<new module>*.(gif/png)
o ./custom/Extension/modules/<new module>/*
e Database:

39/2.508

o new tables <new module> and <new module> audit
= Note: the DDL gets generated by the Quick Repair and
Rebuild script, at which point you can execute manually or
automatically
o fields meta data table
= Note: this stores all the custom fields built through Studio
(not Module Builder) after the module is deployed. Make
sure you retrieve all rows from this table that apply to this
module and create a SQL script to insert into the next
system
e Scripts required
o After deploying the custom module, you will need to run the Quick
Repair and Rebuild script found in the admin section.
o SQL
» Script required to import the entry from the
<new_module> and <new_module> audit table.
= Script required to import fields meta data table entries for
this module (if there are any)

Additional notes:

e For a full custom module deployment scenario, this deployment scenario
should be ran first then all of the extended module features deployment
scenarios should be run:

Steps to migrate:

1. Copy all files listed in file system section above
2. Export fields meta data table entries as apply to the custom module (if
any)
3. Run Quick Repair and Rebuild
1. Either manually or automatically run the DDL output from QRR
4. Test functionality

Use Case: Deployment of custom Relationships

A user wants to deploy custom relationships created in an automated way. This
includes anything created through Studio.

Follow the same instructions as for Custom Fields, but:

e Ignore the fields meta data table

e Be sure to consider the following:
o custom/Extension/modules/<side 1 of relationship>/Ext/
o custom/Extension/modules/<side 2 of relationship>/Ext/
o custom/Extension/modules/relationships/

40/ 2.508

Otherwise, the same process applies.

Use Case: Deployment of custom View or Layout metadata (Web)

The user creates custom layouts and views for web from studio and wants to
deploy them.

System considerations:

e File System:
o Layouts:
= /custom/modules/<module>/clients/<platform>/layouts/<la
yout>/ <layout>.php
o Views
= Creating a layout from Studio actually augments the Sidecar
view metadata instead of Sidecar layout metadata
= /custom/modules/<module>/clients/<platform>/views/<lay
out>/ <layout>.php
e Scripts required
o After deploying you will need to run the Quick Repair and
Rebuild script found in the admin section.

Additional notes:

e For layouts(record) you have the option to simply save the modified layout.
In this case the metadata for the layout can be found in ./custom/working/m
odules/<module>/<platform>/views/<view>/<view>.php

e Layouts created from studio create views in

.custom/modules/<module>/views
The created views can be record | list | selection-list

e For the two popup layouts(created from studio), extra metadata is provided
in the ./custom/modules/<module>/metadata/popupdefs.php

Use Case: Deployment of custom View or Layout metadata
(mobile)

The user creates custom layouts and views for mobile from studio and wants to
deploy them.

System considerations:

41/2.508

e File System: YES
o Layouts:
= /custom/modules/<module>/clients/mobile/layouts/<layout
>/ <layout>.php
o Views
= /custom/modules/<module>/clients/mobile/views/<view>/
<view>.php
e Database: NO
e Scripts required
o After deploying you will need to run the Quick Repair and
Rebuild script found in the admin section.

Additional notes:

e Layouts and views are handled the same as with web. From Studio, you can
augment detail, edit and list views.

Deploying Application Code and Integrations
Use Case: Deployment of custom CSS (LESS)

In order to update branding, developers can deploy customized CSS.
System considerations:

e File System: YES
o ./custom/themes/custom.less
e Scripts required
o You will need to run the Quick Repair and Rebuild script found in
the admin section to rebuild the Sugar CSS bundles.

Use Case: Deployment of Logic Hooks and Web Logic Hooks
The developer creates custom logic hooks, they want to deploy them.
System considerations:
Logic Hook:
e File System: YES
o application hooks :

= /custom/Extension/application/Ext/LogicHooks/<file>.php
o module specific hooks:

4212.508

= /custom/Extension/modules/<module>/Ext/LogicHooks/<fil
e>.php
e Scripts required

o You will need to run the Quick Repair and Rebuild script found in
the admin section to rebuild the extensions.

Web Logic Hook:

e Database: YES

o Only for weblogic hooks : row is inserted into
the weblogichooks table.

e Scripts required

o After deploying the custom hooks and database entry in

the weblogichooks table, you will need to run the Quick Repair

and Rebuild script found in the admin section.
o SQL

» Script required to import the entry from
the weblogichooks table.

Use Case: Deployment of custom API endpoints

The user creates a custom api endpoints, he wants to deploy them.

System considerations:

e File System
o clients/<platform>/api/*

o modules/:module/clients/<platform>/api/*
o custom/clients/<platform>/api*

o custom/modules/<module>/clients/<platform>/api/*
e Scripts required

o After deploying the custom api you will need to run the Quick

Repair and Rebuild script found in the admin section. This will
rebuild the ./cache/file map.php and

Jcache/include/api/ServiceDictionary.rest.php files to make your
endpoint available.

Additional notes:

e Logic for how api endpoints are loaded, can be found in

.Jinclude/api/ServiceDictionary.php (where api endpoints are loaded from,
how they are built on Quick Build and Repair, etc.)

Use Case: Deployment of custom Administration Panels

43/2.508

The user creates custom administration panels, and wants to deploy them.
System considerations:

e File System:
o ./custom/Extension/modules/Administration/Ext/Administration/<file
>.php
o ./custom/Extension/modules/Administration/Ext/Language/<langtyp
e.name>.php
o ./custom/themes/default/images/<icon image name>.<img extensi
on>

and depending on the admin panel url, either
o /custom/modules/<linkUrlModule>/*
or

o ./custom/modules/<linkUrlModule>/clients/base/layouts/<route na
me>/*
o ./custom/modules/<linkUrlModule>/clients/base/views/<route _nam
e>/*
e Scripts required
o After deploying the admin panels, you will need to run the Quick
Repair and Rebuild script found in the admin section.

Additional notes:

 The admin url can specify new sidecar routes, old bwc routes, edit view
files, plain scripts, or just open a drawer. Determining the additional
resources to be copied may be impossible without a standard in place.

Use Case: Deployment of custom Jobs / Schedulers
The user creates custom jobs and schedulers, and wants to deploy them.
System considerations:

e File System: YES:
o ./custom/Extension/modules/Schedulers/Ext/ScheduledTasks/<jobna
me>.php
o ./custom/Extension/modules/Schedulers/Ext/Language/<langtype.jo
bname>.php
e Database: YES
o Row is inserted into the schedulers table, if a job is added as a
scheduled job using Administration > Scheduler.

44]2.508

e Scripts required
o After deploying the custom jobs, you will need to run the Quick
Repair and Rebuild script found in the admin section.
o SQL
= Script required to import the entry from
the schedulers table.

Sugar 11.3 to 12.0 Migration Guide

Overview

The purpose of this document is to provide insight to Sugar Developers for
upgrading custom Sugar code, extensions, and integrations to the Sugar 12.0 (Q2
2022) release.

Cloud and On-Site Sugar Release

For those looking to upgrade from Sugar 11.0, you will be catching up with
additional content released in the 11.1 (Q3 2021), 11.2 (Q4 2021), and 11.3 (Q1
2022) cloud-only Sugar releases. In addition to this guide, please review the Sugar
11.1, Sugar 11.2, and Sugar 11.3 migration guides and the release notes linked
below to get a full view of changes since Sugar 11.0.

REST API Version Number

The current version for the Sugar REST APl is 11 16.

Changes That May Affect Developers

The changes in Sugar 12.0 (Q2 2022) that could cause an immediate impact on
customizations and integrations that were built for earlier versions of Sugar are
highlighted in the following Developer Blog post in the SugarClub community:

e Sugar 12.0 (Q2 2022) Customization Guide

Related Documents

For more information about what changed in Sugar 12.0.x, please refer to the
following related document(s):

e What to Expect When Upgrading to Sugar 12.0 (Q2 2022)
e 12.0.0 Upgrade Paths
e 12.0 Installation and Upgrade Guide

45/ 2.508

https://support.sugarcrm.com/documentation/sugar_developer/sugar_developer_guide_11.1/introduction/migration_guide/
https://support.sugarcrm.com/documentation/sugar_developer/sugar_developer_guide_11.1/introduction/migration_guide/
https://support.sugarcrm.com/documentation/sugar_developer/sugar_developer_guide_11.2/introduction/migration_guide/
https://support.sugarcrm.com/documentation/sugar_developer/sugar_developer_guide_11.3/introduction/migration_guide/
https://sugarclub.sugarcrm.com/dev-club/w/dev-tutorials/659/sugar-12-0-q2-2022-customization-guide/
https://support.sugarcrm.com/knowledge_base/installation_upgrade/what_to_expect_when_upgrading_to_12.0/
https://support.sugarcrm.com/documentation/sugar_versions/12.0/ent/sugar_12.0.0_release_notes/#Upgrade_Paths
https://support.sugarcrm.com/smartlinks/installation_and_upgrade_guide/

e 12.0.x Supported Platforms
e Release Notes
o Sugar Sell 12.0.0 Release Notes
o Sugar Serve 12.0.0 Release Notes
o Sugar Enterprise 12.0.0 Release Notes

User Interface

Overview

Sugar's user interface is dependent on the client (i.e. base, mobile, or portal) being
used to access the system. Clients are the various platforms that use Sugar's APIs
to render the user interface. Each platform type will have a specific path for its
components. While the Developer Guide mainly covers the base client type, the
following sections will outline the various metadata locations.

Clients

Clients are the various platforms that access and use Sidecar to render content.
Depending on the platform you are using, the layout, view, and metadata will be
driven based on its client type. The following sections describe the client types.

base

The base client is the Sugar application that you use to access your data from a
web browser. The framework's specific views, layouts, and fields are rendered
using Sidecar. Files specific to this client type can be found in the following
directories:

.JJclients/base/

.Jcustom/clients/base/
./modules/<module>/clients/base/
.Jcustom/modules/<module>/clients/base/

mobile

The mobile client is the SugarCRM mobile application that you use to access data
from your mobile device. The framework-specific views, layouts, and fields for this
application are found in the following directories:

e /clients/mobile/
e ./custom/clients/mobile/
¢ ./modules/<module>/clients/mobile/

46 /2.508

https://support.sugarcrm.com/resources/supported_platforms/sugar_12.0.x_supported_platforms/
https://support.sugarcrm.com/documentation/sugar_versions/12.0/sell/sugar_12.0.0_release_notes/
https://support.sugarcrm.com/documentation/sugar_versions/12.0/serve/sugar_12.0.0_release_notes/
https://support.sugarcrm.com/documentation/sugar_versions/12.0/ent/sugar_12.0.0_release_notes/
http://www.sugarcrm.com/mobile

e ./custom/modules/<module>/clients/mobile/
portal

The portal client is the customer self-service portal application that comes with
Sugar Enterprise and Sugar Ultimate. The framework-specific views, layouts, and
fields for this application are found in the following directories:

e ./clients/portal/

e ./custom/clients/portal/

e ./modules/<module>/clients/portal/

e ./custom/modules/<module>/clients/portal/

Sidecar

Overview

Sidecar is a platform that moves processing to the client side to render pages as
single-page web apps. Sidecar contains a complete Model-View-Controller (MVC)
framework based on the Backbone.js library.

By creating a single-page web app, server load drastically decreases while the
client's performance increases because the application is sending pure JSON data
in place of HTML. The JSON data, returned by the v10 API, defines the
application's modules, records, and ACLs, allowing Ul processing to happen on the
client side and significantly reducing the amount of data to transfer.

4712.508

m
&
v

Metadata Manager

I

Composition

Sidecar contains the following parts, which are briefly explained in the sections
below:

e Backbone.js
e Components (Layouts, Views, and Fields)
e Context

Backbone.js

Backbone.js is a lightweight JavaScript framework based on MVP
(model-view-presenter) application design. It allows developers to easily interact
with a RESTful JSON API to fetch models and collections for use within their user
interface.

For more information about Backbone.js, please refer to their documentation
at Backbone.js.

4812.508

http://backbonejs.org/

Components

Everything that is renderable on the page is a component. A layout is a component
that serves as a canvas for one or more views and other layouts. All pages will have
at least one master layout, and that master layout can contain multiple nested
layouts.

Layouts

Layouts are components that render the overall page. They define the rows,
columns, and fluid layouts of content that gets delivered to the end user.

Example layouts include:

e Rows

Columns

Bootstrap fluid layouts

e Drawers and dropdowns

Page
Row Layout
View 1
Column Layout
View 2 View 3
| Field1 | | Field2 |

For more information about the various layouts, please refer to the Layouts page of
this documentation.

Views
Views are components that render data from a context and may or may not include

field components. Example views include not only record and list views but also
widgets such as:

49/2.508

e Graphs or other data visualizations

e External data views such as Twitter, LinkedIn, or other web service
integrations

e The global header

For more information about views, please refer to the Views page of this
documentation.

Fields

Fields render widgets for individual values that have been pulled from the models
and also handle formatting (or stripping the formatting of) field values. Like
layouts and views, fields extend Backbone views.

For more information about the various layouts, please refer to the Fields page of
this documentation.

Context

A Context is a container for the relevant data for a page, and it has three major
attributes:

e Module : The name of the module this context is based on
e Model : The primary or selected model for this context
e Collection : The set of models currently loaded in this context

Contexts are used to retrieve related data and to paginate through lists of data.

Events

Overview

The Backbone events module is a lightweight pub-sub pattern that gets mixed into
each Backbone class (Model, View, Collection, Router, etc.). This means that you
can listen to or dispatch custom named events from any Backbone object.

Backbone events should not be confused with a jQuery events, which are used for
working with DOM events in an API. Backbone supports an events hash on views
that can be used to attach event handlers to DOM using jQuery. These are not
Backbone events. This can be confusing because, among other similarities, both
interfaces include an on() function and allow you to attach an event handler. The
targets for jQuery events are DOM elements. The target for Backbone events are
Backbone objects.

50/2.508

https://api.jquery.com/category/events/

Sidecar classes extend these base Backbone classes. So each Sidecar object
(Layouts, Views, Fields, Beans, Contexts, etc.) supports Backbone events.

Existing Backbone Event Catalog

The current catalog of Backbone events is supported and triggered by the Sugar
application. For example, we can listen to built-in Backbone router events, such as
the route event, that is triggered by Sidecar. Try running the following JavaScript
code from your browser's console:

SUGAR. App. router.on('route', function(argunents) {
consol e. | og(argunents);

1)

As you click through the Sugar application, each time the router is called, you will
see routing events appear in your browser console.

Sidecar Events
Global Application Events

Application events are all triggered on the app.events (SUGAR.App.events) object.
Below is a list of application events with a description of when you can expect
them to fire. However, please note that these events can be triggered in more than
one place and some events, such as app:sync:error, can trigger events such

as app:logout.

Name Description
app:init Triggered after the Sidecar application
initializes

Note: Initialization registers events,
builds out Sidecar API objects, loads
public metadata and config, and
initializes modules.

app:start Triggered after the Sidecar application
starts
app:sync Triggered when metadata is being

synced with the user interface, for
example, after login has occurred

app:sync:complete Triggered after metadata has
completely synced

51/2.508

https://cdn.rawgit.com/jashkenas/backbone/0.9.10/index.html#Events-catalog
https://cdn.rawgit.com/jashkenas/backbone/0.9.10/index.html#Router

app:sync:error

Triggered when metadata sync fails

app:sync:public:error

Triggered when public metadata sync
fails during initialization

app:view:change

Triggered when a new view is loaded

app:locale:change

Triggered when the locale changes

lang:direction:change

Triggered when the locale changes and
the direction of the language is different

app:login

Triggered when the "Login" route is
called

app:login:success

Triggered after a successful login

app:logout

Triggered when the application is
logging out

app:logout:success

Triggered after a successful logout

Bean Events

The following table lists bean object events.

Name

Description

acl:change

Triggered when the ACLs change for
that module

acl:change:<fieldName>

Triggered when the ACLs change for a
particular field in that module

validation:success

Triggered when bean validation is valid

validation:complete

Triggered when bean validation
completes

error:validation

Triggered when bean validation has an
error

error:validation:<fieldName>

Triggered when a particular field has a
bean validation error

attributes:revert

Triggered when the bean reverts to the
previous attributes

Context Events

The context object is used to facilitate communication between different Sidecar
components on the page using events. For example, the button:save button:click
event triggers whenever a user clicks the Save button. The record view uses this
event to run Save routines without being tightly coupled to a particular Save
button. A list of these contextual events is not plausible because the user interface

52/2.508

is continuously changing between versions, and there are many more possibilities
based on the views and layouts in each version.

Utilizing Events

Application events can be bound to in any custom JavaScript controller or any
JavaScript file loaded into Sugar and included on the page (such as via
JSGroupings framework). An example below shows how one could add custom
JavaScript code to trigger after the application log out.

.Jcustom/include/javascript/myAppLogoutSuccessEvent.js

(function(app){
app. events. on(' app: | ogout: success', function(data) {
/1 Add Logi c Here
consol e. |l og(dat a);
1)
}) (SUGAR. App) ;

With the custom event JavaScript file written and in place, include it into the
system using the JSGroupings extension.

.Jcustom/Extension/application/Ext/]SGroupings/myAppLogoutSuccessEvent.php

foreach ($j s_groupings as $key => $groupi ngs) {
foreach ($groupings as $file => $target) {
/[1if the target grouping is found
if ($target == "include/javascript/sugar_grp7.mn.js"') {
/I append the custom JavaScript file
$j s_groupi ngs[$key] [' cust om i ncl ude/ j avascri pt/ myAppLogout

SuccessEvent.js'] = "include/javascript/sugar_grp7.mn.js';
}
br eak;
}
}

Once in place, navigate to Admin > Repair > Rebuild JS Grouping Files. After the
JSGroupings are rebuilt, clear your browser cache and the custom JavaScript will
now trigger after a successful logout.

53/2.508

Routes

Overview

Routes determine where users are directed based on patterns in the URL.

Routes

Routes, defined in ./include/javascript/sugar?7.js, are URL patterns signified by

a hashtag ("#") in the URL. An example module URL pattern for the Sugar
application is http://{site url}/# <module>. This route would direct a user to the

list view for a given module. The following sections will outline routes and how
they are defined.

Route Definitions
The router accepts route definitions in the following format:

routes = [

{
name: "My First Route",
route: "pattern/to/ mtch",
cal | back: function()
{
/' handling | ogic here.
}
b
{
name: "My Second Route",
route: "pattern/:variable",
cal | back: "<cal | back nane>"
}

A route takes in three properties: the name of the route, the route pattern to
match, and the callback to be called when the route is matched. If a default
callback is desired, you can specify the callback name as a string.

Route Patterns

Route patterns determine where to direct the user. An example of routing is done
when navigating to an account record. When doing this you may notice that your

54 /2.508

URL is:

http://{site url}/#Account s/ aaaaaaaa- bbbb-cccc-dddd- eeceeeeeeeeee

A stock route's definition is defined in ./include/javascript/sugar7.js as:

{

nane: "record",
route: ":nodule/:id"

}

Variables in the route pattern are prefixed with a colon such as :variable. The
route pattern above contains two variables:

e module
e id

Custom Routes

As of 7.8.x, you can add the routes during the initialization of the Router, so
custom routes can be registered in the Sidecar router during both router:init
and router:start events. It is recommended to register them in the Initialization
event before any routing has occurred. There are two methods in the Sidecar
Router, which allow for adding custom routes:

route()

Arguments

Name Required Type Description

route true string The Route pattern
to be matched by
the URL Fragment

name true string The unique name of
the Route

callback true function The callback
function for the
Route

Example

55/2.508

The following example registers a custom Route during the router:init event, using
the route() method.

.Jcustom/javascript/customRoutes.js

(function(app){
app. events.on("router:init", function(){
/'l Regi ster the route #test/123
app.router.route("test/:id", "test123", function() {
consol e. |l og(argunents);
app.control l er. | oadVi ewm {
| ayout: "custom|ayout",
create: true
1)
1)
})
}) (SUGAR. App) ;

addRoutes()

When you need to add multiple routes, you can define the routes in an array and
pass the entire array to the addRoutes() method on the Sidecar Router to ensure
they are registered. Please note, the addRoutes() method utilizes the above route()
method to register the routes with the Backbone Router. The Backbone router
redirects after the first matching route. Due to this, the order in which the routes
are listed in the array is important as it will determine which route will be used by
the application. It is recommended that the most specific routes be listed first in
the array so that they are recognized first, instead of those routes which may
contain a variable.

Arguments

Name Required Type Description

routes true array An array of route
definition as
defined above.

Example

The following example registers custom Route during the router:init event, using
the addRoutes() method.

The route's JavaScript controller can exist anywhere you'd like. For our purposes,
we created it in ./custom/javascript/customRoutes.js. This file will contain your

56 /2.508

custom route definitions.
.Jcustom/javascript/customRoutes.js

(function(app){
app. events.on("router:init", function(){
var routes = |
{

route: 'test/doSonething',
nane: 'testDoSonething',

cal | back: function(){

al ert ("Doing sonething...");

}
1
{
route: 'test/:id',
nanme: 'test123',
cal | back: function(){
consol e. | og(argunents);
app. control l er. | oadVi ewm {
| ayout: "custom | ayout"”
create: true
1)
}
}

1
app. rout er. addRout es(rout es);

})
}) (SUGAR. App) ;

Next, create the JSGrouping extension. This file will allow Sugar to recognize that
you've added custom routes.

.Jcustom/Extension/application/Ext/]SGroupings/myCustomRoutes.php
<?php

foreach ($js_groupings as $key => $groupi ngs) {
$target = current(array_val ues($groupi ngs));

/[lif the target grouping is found

if ($target == "include/javascript/sugar_grp7.mn.js"') {
/I append the custom JavaScript file
$j s_groupi ngs[$key] [' cust om j avascri pt/custonRoutes.js'] = 'in

57 /2.508

clude/javascript/sugar_grp7.mn.js";
}
}

Once your files are in place, navigate to Admin > Repairs > Quick Repair &
Rebuild. For additional information, please refer to the JSGroupings framework.

Handlebars

Overview

The Handlebars library, located in ./sidecar/lib/handlebars/, is a JavaScript library
that lets Sugar create semantic templates. Handlebars help render content for
layouts, views, and fields for Sidecar. Using Handlebars, you can make
modifications to the display of content such as adding HTML or CSS.

For more information on the Handlebars library, please refer to their website
at http://handlebarsjs.com.

Templates

The Handlebars templates are stored in the filesystem as .hbs files. These files are
stored along with the view, layout, and field metadata and are loaded according to
the inheritance you have selected in your controller. To view the list of available
templates, or to see if a custom-created template is available, you can open your
browser's console window and inspect the Handlebars.templates namespace.

Debugging Templates

When working with Handlebar templates, it can be difficult to identify where an
issue is occurring or what a variable contains. To assist with troubleshooting this,
you can use the log helper. The log helper will output the contents of this and the

variable passed to it in your browser's console.

This is an example of using the logger in a handlebars template:

{{1 og this}}

Helpers

58 /2.508

http://handlebarsjs.com/

Handlebar Helpers are a way of adding custom functionality to the templates.
Helpers are located in the following places:

e ./sidecar/src/view/hbs-helpers.js : Sidecar uses these helpers by default
e ./include/javascript/sugar7/hbs-helpers.js : Additional helpers used by the
base client

Creating Helpers

When working with Handlebar templates, you may need to create your helper. To
do this, follow these steps:

1. Create a Handlebars helper file in the ./custom/ directory. For this
example, we will create two functions to convert a string to uppercase or
lowercase:

.Jcustom/JavaScript/my-handlebar-helpers.js

/**

* Handl ebars hel pers.
* These functions are to be used in handl ebars tenplates.
* @l ass Handl ebars. hel pers
* @i ngl eton
*/
(function(app) {
app. events.on("app:init", function() {

/**

* convert a string to upper case

*/
Handl ebar s. regi st er Hel per (" cust omJpper Case”, function (text)
{
return text.toUpperCase();
1)
/**

* convert a string to | ower case

*/
Handl ebar s. regi st er Hel per (" cust omLower Case", function (text)
{
return text.tolLower Case();
1)
1)
}) (SUGAR. App) ;

59/2.508

2. Next, create a JSGrouping extension in
.Jcustom/Extension/application/Ext/]SGroupings/. Name the file uniquely for
your customization. For this example, we will create:

.Jcustom/Extension/application/Ext/JSGroupings/my-handlebar-helpers.php
<?php

[/ Loop through the groupings to find include/javascript/sugar_grp7.mn
js
foreach($j s_groupings as $key => $groupi ngs) {
foreach($groupings as $file => $target) {
if ($target == "include/javascript/sugar_grp7.mn.js') {
/I append the custom hel per file
$j s_groupi ngs[$key] [' cust oml JavaScri pt/ ny- handl ebar -
hel pers.js'] = "include/javascript/sugar_grp7.mn.js";

}

br eak;

3. Finally, navigate to Admin > Repair and perform the following two repair
sequences to include the changes:
o Quick Repair and Rebuild
o Rebuild JS Groupings.

You can now use your custom helpers in the HBS files by using:

{{cust onJpper Case "MyString"}}
{{cust onLower Case "M/String"}}

Note: You can also access the helpers function from your browsers developer
console using Handlebars.helpers

Layouts

Overview

Layouts are component plugins that define the overall layout and positioning of the
page. Layouts replace the previous concept of MVC views and are used system-
wide to generate rows, columns, bootstrap fluid layouts, and pop-ups by wrapping

60/2.508

and placing multiple views or nested layouts on a page.

Page

Row Layout

View 1

Column Layout

View 2 View 3

Layout components are typically made up of a controller JavaScript file (.js) and a
PHP file (.php), however, layout types vary and are not dependent on having both
files.

Hierarchy Diagram

The layout components are loaded in the following manner:

‘ Jeustomimodules/=module=fclients/=client=layouts/ ‘

If not found, leads

‘ Jmodulesf=module=fclientsf<client=layouts’ ‘

If not found, leads

‘ Joustomiclientsf=client=layouts/ ‘

If not found, leads

‘ Jelientsf=client=layouts’ ‘

Note: The Sugar application client type is "base". For more information on the
various client types, please refer to the User Interface page.

Sidecar Layout Routing

61/2.508

Sidecar uses routing to determine where to direct the user. To route the user to a
specific page in Sugar, refer to the following default URL formats:

Behavior URL Format

Route the user to the list layout for a http://{site url}/#<module>/
module

Route the user to the record layout for a |http://{site url}/#<module>/f82d09cb-4

specific record 8cd-alfb-beae-521¢cf39247b5
Route the user to a custom layout for http://{site
the module url}/#<module>/layout/<layout>

Layout Example

The list layout, located in ./clients/base/layouts/list/, handles the layout for the list
view. The sections below outline the various files that render this view.

JavaScript

The file list.js, shown below, contains the JavaScript used to place the layout
content.

.Jclients/base/layouts/list/list.js

/**

* Layout that places conponents using bootstrap fluid | ayout divs
* @l ass View Layouts. Li st Layout

* @xtends View. Fl ui dLayout

*/

({
/**
* Places a view s elenent on the page.
* @aram {View. View} conp
* @protected
* @ret hod
*/

_placeConponent : function(conp, def) {
var size = def.size || 12;

/'l Helper to create boiler plate |ayout containers
function createlLayout Containers(self) {

I/l Only creates the containers once

if (!self.$el.children()[0]) {

62 /2.508

conp. $el . addCl ass('list');
}
}

cr eat eLayout Cont ai ners(this);

/1 Al conponents of this layout will be placed within the
/'l innernost container div.

t hi s. $el . append(conp. el);

})

Layout Definition

The layout definition is contained as an array in list.php. This layout definition
contains four views:

massupdate
massaddtolist
recordlist
list-bottom

./clients/base/layouts/list/list.php
<?php

$vi ewdef s[' base']['layout']J['list'] = array(
' conponents' =>

array(
array(
'view => 'nmassupdate',
)
array(
"view => 'nmssaddtolist’',
)
array(
"view => 'recordlist',
‘primary' => true,
)
array(
'view => '"|ist-bottoni,
)
)

‘type' => 'sinple',
"nanme' => 'list',
'span' => 12,

63/2.508

Application

For information on working with layouts, please refer to the Creating Layouts and
Overriding Layouts pages for practical examples.

Creating Layouts

Overview

This example explains how to create a custom layout to define the various
components that load on a page.

Creating the Layout

This example creates a component named "my-layout”, which will render a custom
view named "my-view".

.Jcustom/clients/base/layouts/my-layout/my-layout.php

<?php
$vi ewdef s[' base'J['layout']["'my-layout'] = array(
"type' => "'sinple',
' conponents' => array(
array(
‘view =>'ny-view,
),
),

Creating a View
The view component will render the actual content we want to see on the page.
The view below will display a clickable cube icon that will spin when clicked by the

user.

.Jcustom/clients/base/views/my-view/my-view.js

64 /2.508

({

cl assName: 'ny-view tcenter',
cubeOptions: {
spin: fal se

1
events: {

"click .sugar-cube': 'spinCube
b

spi nCube: function() {
this.cubeOptions.spin = !'this.cubeOptions. spin;
this.render();

})

.Jcustom/clients/base/views/my-view/my-view.hbs

<styl e>
di v. ny-vi ew

{
}

di v. ny-vi ew . sugar - cube

{

paddi ng-top: 5%

fill:#bbbbbb;
hei ght : 200px;
wi dt h: 200px;
di splay: inline;

}
</styl e>
<h1l>My Vi ew</ hl>
{{{subFi el dTenpl ate ' sugar-cube' 'detail' cubeOptions}}}

<p>Click to spin the cube!</p>

Once the files are in place, navigate to Admin > Repair and perform a Quick
Repair and Rebuild.

Navigating to the Layout

65/2.508

To see this new layout and view, navigate to http://{site
url}/#<module>/layout/my-layout.

Overriding Layouts

Overview

This page explains how to override a stock layout component. For this example, we
will extend the stock record view and create a custom view named "my-record"
that will be used in our record layout's override. This example involves two steps:

1. Override the Lavout
2. Extend the View

These steps are explained in the following sections.

Overriding the Layout
First, copy ./clients/base/layouts/record/record.php to
.Jcustom/clients/base/layouts/record/record.php. Once copied, modify the following

line from:

'view => 'record',

To:

'view => 'ny-record',

That line will change the record layout from using the base record.js view,
.J/clients/base/views/record/record.js, to instead use a custom view that we will
create in ./custom/clients/base/views/my-record/my-record.js. At this point,
the custom layout override should be very similar to the example below:
.Jcustom/clients/base/layouts/record/record.php

<?php

$vi ewdef s[' base']['layout']['record'] = array(

66 / 2.508

conponents' => array(

array/(
"layout' => array(
"type' => 'default',
‘name’ => 'sidebar',
' conponents' => array(
array(
"layout' => array(
‘type' => 'base',
'nane' => 'nain-pane',
'css_class' => 'nmain-pane span8',
' conponents' => array(
array(
‘view => 'ny-record,
"primary' => true,
),
array(
"layout' => 'extra-info',
)
array/(
"layout' => array(
"type' => "filterpanel"’,
"last_state' => array(
"id" => 'record-
filterpanel',
"defaults' => array(
't oggl e-
view => 'subpanel s',
)
),
"refresh _button' => true,
"avai | abl eToggl es' => array(
array(
'nane' => 'subpanel s',
"icon' => 'fa-table',
‘label’ =>'LBL_DATA V
| EW,
),
array(
‘nanme’ => 'list',
"icon' => 'fa-table',
‘label’ =>"'LBL_LISTVI
EW,
),
array(
"nane'’ => 'activitystr

67 /2.508

eam ,
o',

TY _STREAM ,

rs ,

rows ,

actions',

trean ,

ities',

"icon' =>

"fa-cl ock-

'l abel' =>"'LBL_ACTI VI

),
),
' conponents' => array(
array(
"l ayout"’

= "filter',

"xmeta' => array(
"l ayout Type' => "'

"l oadModul e' => "Filte

=> 'activitys

=>

"nmodul e’ => 'Activ

=> ' subpanel s

)

).

array(
'view => 'filter-

).

array(
'view => 'filter-

).

array(
"l ayout'’
‘cont ext'
array(
).

)

array(
"l ayout"’

)

).
)
)
)
)
)
array(

"layout' => array(

68 /2.508

type' => 'base',
nane' => 'dashboar d- pane’
css_class' => 'dashboard- pane',
conponents' => array(
array(
"layout' => array(
"type' => 'dashboard',
"last_state' => array(
"id" =>"'last-visit',

)

)

‘context' => array(
"forceNew => true,
"nodul e => ' Hone',

),
‘| oadModul e' => ' Dashboards’,
),
),
),
),
array(
"layout' => array(
'type' => 'base',
"nane' => 'previ ew pane',
'css_class' => 'preview pane',
' conponents' => array(
array(
"layout' => 'preview,
),
),
),
),

Extending the View

For this example, we will extend the stock record view and create a custom view
named my-record that will be used in our record layouts override.

.Jcustom/clients/base/views/my-record/my-record.js

69 /2.508

({

extendsFrom ' RecordVi ew ,
initialize: function (options) {

this. _super("initialize", [options]);

/11og this point
console.log("**** Override called");

})

Once the files are in place, navigate to Admin > Repair > Quick Repair and
Rebuild.

Views

Overview

Views are component plugins that render data from a context. View components
may contain field components and are typically made up of a controller JavaScript
file (.js) and at least one Handlebars template (.hbs).

Load Order Hierarchy Diagram

The view components are loaded in the following manner:

‘ Jeustam/modules/=modulesilients/<client=views’ ‘

If not found, leads

‘ Jmodulesfzmodule=fclientsizclient=fviews/ ‘

If not found, loads

‘ Jeustomiclients/=client=fviews/ ‘

If not found, loads

‘ Jelientsf=client=fviews/ ‘

70/2.508

Note: The Sugar application's client type is "base". For more information on the
various client types, please refer to the User Interface page.

Components
Views are made up of a controller and a Handlebar template.
Controller

The view's controller is what controls the view in how data is loaded, formatted,
and manipulated. The controller is the JavaScript file named after the view. A
controller file can be found in any of the directories shown in the hierarchy
diagram above. In the example of the record view, the main controller file is
located in ./clients/base/views/record/record.js and any modules extending this
controller will have a file located in
./modules/<module>/clients/base/views/record/record.js.

Handlebar Template

The views template is built on Handlebars and is what adds the display markup
for the data. The template is typically named after the view or an action in the
view. In the example of the record view, the main template us located in
.Jclients/base/views/record/record.hbs. This template will take the data fetched
from the REST API to render the display for the user. More information on
templates can be found in the Handlebars section.

Extending Views

When working with module views, it is important to understand the difference
between overriding and extending a view. Overriding is essentially creating or
copying a view to be used by your application that is not extending its parent. By
default, some module views already extend the core
./clients/base/views/record/record.js controller. An example of this is the accounts
RecordView

./modules/Accounts/clients/base/views/record/record.js

({

extendsFrom ' RecordVi ew ,

/**
* @nheritdoc
*/
initialize: function(options) {
this.plugins = _.union(this.plugins || [], ['H storical Sumrmary

71/2.508

1)

this. super('initialize , [options]);

})

As you can see, this view has the property: extendsFrom: 'RecordView'. This
property tells Sidecar that the view is going to extend its parent RecordView. In
addition to this, you can see that the initialize method is also

calling this. super(‘initialize’, [options]);. Calling this. super tells Sidecar to
execute the parent function. The major benefit of doing this is that any updates to
./clients/base/views/record/record.js will be reflected for the module without any
modifications being made to
./modules/Accounts/clients/base/views/record/record.js. You should note that when
using extendsFrom, the parent views are called similarly to the load hierarchy:

[.Jcustom/modules/<module>/clients/<client>/views/<view>.js }

If exists, calls

[./modules/<module>/clients/<client>/views/<view>.js]

If exists, calls

[fcustom/clients/<client>/views/<view>.js]

If exists, calls

[[clients/<client>/views/<view>.js]

Create View and Record View Inheritance

The diagram below demonstrates the inheritance of the create and record views
for the Quotes module. This inheritance structure is the same for stock and custom
modules alike.

72/2.508

Custom Quotes Create Custom Quotes Record

Jeustom/modules/Quotes/clients/base/views/create/create.js Jeustom/modules/Quotes/clients/base/views/record/record.js
h 4 \ 4
Quotes Create Quotes Record
/modules/Quotes/clients/base/views/create/create.js /modules/Quotes/clients/base/views/record/record.js
h 4

Custom Create
Jcustom/clients/base/views/create/create.js

A 4

Create
Jclients/basel/views/create/create.js

\

Custom Record
Jcustom/clients/base/views/record/record.js

A 4

Record
clients/base/views/record/record.js

Basic View Example

A simple view for beginners is the access-denied view. The view is located in
.Jclients/base/views/access-denied/ and is what handles the display for restricted
access. The sections below will outline the various files that render this view.

Controller
The access-denied.js, shown below, controls the manipulation actions of the view.

./clients/base/views/access-denied/access-denied.js

({

cl assNane: 'access-denied tcenter',
cubeOptions: {spin: false},
events: {

"click .sugar-cube': 'spinCube

b

spi nCube: function() {
this. cubeOptions.spin = I'this.cubeOptions. spin;
this.render();

73/2.508

})

Attributes

Attribute Description

className The CSS class to apply to the view.

cubeOptions A set of options that are passed to the
spinCube function when called.

events A list of the view events. This view
executes the spinCube function when
the sugar cube is clicked.

spinCube Function to control the start and stop of
the cube spinning.

Handlebar Template

The access-denied.hbs file defines the format of the views content. As this view is
used for restricting access, it displays a message to the user describing the
restriction.

./clients/base/views/access-denied/access-denied.hbs

<div class="error-nessage">
<h1l>{{str 'ERR_NO VI EW ACCESS TI TLE' }}</h1>
<p>{{str ' ERR_NO VI EW ACCESS REASON }} </ p>
<p>{{str 'ERR_NO_VI EW ACCESS ACTI ON }}</ p>
</ div>

{{{subFi el dTenpl ate ' sugar-cube' 'detail’' cubeOptions}}}

Helpers

Name Description

str Handlebars helper to render the label
string

subFieldTemplate Handlebars helper to render the cube
content

Cookbook Examples

74/2.508

When working with views, you may find the follow cookbook examples helpful:

e Adding Buttons to the Record View
e Adding Field Validation to the Record View
e Passing Data to Templates

Metadata
Overview
This page is an overview of the metadata framework for Sidecar modules.

View Metadata Framework

A module's view-specific metadata can be found in the modules view file:

. I modul es/ <nodul e>/ cl i ents/<client>/views/<view/<view. php

Any edits made in Admin > Studio will be reflected in the file:

./ cust om nodul es/ <nodul e>/ cl i ents/<client>/views/<view/<view>. php

Note: The Sugar application's client type is "base". For more information on the
various client types, please refer to the User Interface page.

Note: In the case of metadata, custom view metadata files are respected over the
stock view metadata files.

View Metadata

The Sidecar views metadata is very similar to that of the MVC metadata, however,
there are some basic differences. All metadata for Sidecar follows the format:

$vi ewdef s[' <nmodul e>'][' base'J['view]['<view>'] = array();

An example of this is the account's record layout shown below:

./modules/Accounts/clients/base/views/record/record.php

75/2.508

<?php

$vi ewdef s[' Accounts'][' base']['view]['record'] = array(
"panel s' => array(
array(
"nane' => 'panel _header’',
"header' => true,
"fields' => array(

array(
' nane' => 'picture',
"type' => 'avatar',
"wi dt h' => 42,
" hei ght' => 42,
"dismss_|abel' => true,
' readonl y' => true,

),

"nanme' ,

array(

"nane' => 'favorite',
‘label’ =>"'LBL_FAVORI TE',
"type' => 'favorite',

"dismss_|abel' => true,
)
array(
"name' => "follow,
‘label'=>"LBL_FOLLOW,
"type' => "follow,
"readonly' => true,
"dismi ss |abel' => true,
),
)
),
array(

"nane' => 'panel _body',

‘colums' => 2,

"| abel sOnTop' => true,

' pl acehol ders' => true,

"fields' => array(
‘website',
"“industry',
" parent _nane',
‘account _type',
'assi gned_user _nane',
' phone_office',

)

),

76 /2.508

ET,

E .

AL CODE'

TRY" ,

array(

"nane' => 'panel _hi dden',
"hide' => true,

" col umms'

=> 2,

"| abel sOnTop' => true,
' pl acehol ders' => true,
"fields' => array(

array(

"nanme’ => 'fieldset address',
"type' => 'fieldset',
'css_class' => '"address',
"label' => "Billing Address',
"fields' => array(

),

array(

array(
"nanme' => 'billing_address street',
'css_class' => 'address_street',
' pl acehol der' => ' LBL_BI LLI NG ADDRESS STRE

)
array(
"nanme' => 'billing_address_city',
'css_class' => "address _city',
' pl acehol der' => ' LBL_BI LLI NG ADDRESS CI TY
)
array(
"name' => 'billing_address_state',
'css_class' => 'address_state',
' pl acehol der' => ' LBL_BI LLI NG ADDRESS_STAT
)
array(
"name’ => 'billing_address_postal code',
'css_class' => 'address_zip',
' pl acehol der' => ' LBL_BI LLI NG ADDRESS_ POST
)
array(
"name' => 'billing_address_country',
'css_class' => '"address_country',
' pl acehol der' => ' LBL_BI LLI NG ADDRESS COUN
)

7712508

EET' ,

Y,

TE' ,

TALCODE' ,

NTRY" ,

address_street"',
dress _city',

ddress_state',

"nanme’ => 'fieldset_shipping address',

"type' => 'fieldset',

'css_class' => '"address',

"l abel' => ' Shi ppi ng Address',

"fields' => array(

array(

"nanme’ => 'shipping_address _street',
'css_class' => 'address_street',
' pl acehol der' => ' LBL_SHI PPI NG ADDRESS STR

)
array(
"nanme' => 'shipping_address_city',
'css_class' => "address _city',
' pl acehol der' => ' LBL_SHI PPI NG ADDRESS CI T
)
array(
"nanme' => 'shipping_address_state',
'css_class' => 'address_state',
' pl acehol der' => ' LBL_SHI PPl NG ADDRESS STA
)
array(
"name' => 'shi ppi ng_address_post al code',
'css_class' => 'address_zip',
' pl acehol der' => ' LBL_SHI PPl NG_ADDRESS PCS
)
array(
"name' => 'shi ppi ng_address_country',
'css_class' => '"address_country',
' pl acehol der' => 'LBL_SHI PPI NG ADDRESS CQU
)
array(

‘nane’ => 'copy',

'l abel' => "'NTC_COPY_BI LLI NG_ADDRESS' ,

‘type’ => "copy’,

"mappi ng' => array(
"billing_address_street' => 'shipping_

"billing_address_city' => 'shipping_ad

"billing_address_state' => 'shipping_a

78/2.508

i ng_addr ess_post al code'

_address_country',

"billing _address_postal code

"billing _address _country’

),
)
),
array(
"nane' => 'phone_alternate',
‘label' => 'LBL_OTHER PHONE',
),
"email ',
" phone_fax',
' canpai gn_nane' ,
array(
"nanme'’ => 'description',
"span' => 12,
)
'sic_code',
"ticker_synbol'
"annual _revenue',
"enpl oyees',
"ownership',
"rating',
array(
"nane' => 'date_entered _by',
"readonly' => true,
"type' => 'fieldset',
"label' => 'LBL_DATE _ENTERED ,
"fields' => array(
array(
"nanme' => 'date_entered',
),
array(
"type' => 'l abel",
‘default _val ue' => 'LBL_BY',
),
array(
"nane' => 'created_by nane',
)
),
)
't eam _nane'
array(

nane' => 'date_nodified _by',

=> ' shi pp

=> ' shi ppi ng

79/2.508

"readonly' => true,
"type' => 'fieldset',
‘label' => 'LBL_DATE_MODI FI ED ,
"fields' => array(
array(
"nane' => 'date_nodified,
)
array(
"type' => 'label",
"default_value' =>"'LBL_BY',
)
array(
"nanme’ => 'nodified by nane',

),

The metadata for a given view can be accessed using app.metadata.getView within
your controller. An example fetching the view metadata for the Accounts
RecordView is shown below:

app. net adat a. get Vi ew(' Accounts', 'record');

You should note that this can also be accessed in your browser's console window
by using the global App Identifier:

App. net adat a. get Vi ewm(' Accounts', 'record');

Fields

Overview

Fields are component plugins that render and format field values. They are made
up of a controller JavaScript file (.js) and at least one Handlebars template (.hbt).

80/2.508

For more information regarding the data handling of a field, please refer the data
framework fields documentation. For information on creating custom field types,
please refer the Creating Custom Field Types cookbook example.

Hierarchy Diagram

The field components are loaded in the following manner:

‘ Jeustom/modules/=module=flients/=client=fields/ ‘

If not found, leads

‘ Jmodulesf<module=/fclients/<client=fields/ ‘

If not found, leads

‘ Jeustomiclients/=client=fields/ ‘

If ot found, leads

‘ Jelientsf=client=fields/ ‘

Note: The Sugar application's client type is "base". For more information on the
various client types, please refer to the User Interface page.

Field Example

The bool field, located in ./clients/base/fields/bool/, handles the display of checkbox
boolean values. The sections below outline the various files that render this field

type.
Controller

The bool.js, file is shown below, overrides the base render function to disable the
field. The format and unformat functions handle the manipulation of the field's
value.

.Jclients/base/fields/bool/bool.js

({

_render: function() {
app. view. Fiel d. prototype. _render.call (this);

if(this.tpl Name === '"disabled) {

81/2.508

this.$(this.fieldTag).attr("di sabl ed", "disabled");

}

1

unformat: function(val ue){
value = this. $el.find(".checkbox").prop("checked") ? "1" : "0"
return val ue;

b

format: function(val ue){
value = (value=="1") ? true : false;
return val ue;

}

1)

Attributes

Attribute Description

_render Function to render the field.

unformat Function to dynamically check the
checkbox based on the value.

format Function to format the value for storing
in the database.

Handlebar Templates

The edit.hbs file defines the display of the control when the edit view is used. This
layout is for displaying the editable form element that renders a clickable checkbox
control for the user.

.Jclients/base/fields/bool/edit.hbs

{{#if def.text}}
<| abel >
<i nput type="checkbox" class="checkbox"{{#if value}} checked{{
[if}}> {{str def.text this.nodul e}}
</ | abel >

{{el se}}
<i nput type="checkbox" class="checkbox"{{#if value}} checked{{/if}
}>

{{/if}}

Helpers

82/2.508

Helpers Description

str Handlebars helper to render the label
string.

The detail.hbs file defines the display of the control when the detail view is used.
This layout is for viewing purposes only so the control is disabled by default.

./clients/base/fields/bool/detail.hbs

<i nput type="checkbox" class="checkbox"{{#if value}} checked{{/if}}
di sabl ed>

The list.hbs file defines the display of the control when the list view is used. This
view is also for viewing purposes only so the control is disabled by default.

.Jclients/base/fields/bool/list.hbs

<i nput type="checkbox" class="checkbox"{{#if value}} checked{{/if}}
di sabl ed>

Cookbook Examples
When working with fields, you may find the follow cookbook examples helpful:

e Creating Custom Field Types
e Converting Address' Country Field to a Dropdown

Subpanels

Overview

For Sidecar, Sugar's subpanel layouts have been modified to work as simplified
metadata. This page is an overview of the metadata framework for subpanels.

The reason for this change is that previous versions of Sugar generated the
metadata from various sources such as the SubPanelLayout and MetaDataManager
classes. This eliminates the need for generating and processing the layouts and
allows the metadata to be easily loaded to Sidecar.

83/2.508

Note: Modules running in backward compatibility mode do not use the Sidecar
subpanel layouts as they use the legacy MVC framework.

Hierarchy Diagram

When loading the Sidecar subpanel layouts, the system processes the layout in the
following manner:

/ N\

Joustomimodulesfsmodule=fclients/<client=layouts/subpanelsfsubpanels.php ‘

If not found, loads

‘ Jmodulest=module=/clienis/=client=layoutsisubpanels/subpanels.php ‘

If not found, loads

Joustiomiclientsi<clientNayouts/subpanel/subpanel.php ‘

|
If not found, loads

‘ Jelients/<client=layouts/subpanel/subpanel.php ‘

. S/

Is appended to the result of

Jeustom/modulesf=module=/Exticlients/baselayoutsisubpanels/subpanels.ext.php ‘

Files in this direciory are compiled into

‘ Joustom/Extension/modules/=smodule=Extclients/zclient=Alayouts/subpanels’

Note: The Sugar application's client type is "base". For more information on the
various client types, please refer to the User Interface page.

Subpanels and Subpanel Layouts
Sugar contains both a subpanels (plural) layout and a subpanel (singular) layout.
The subpanels layout contains the collection of subpanels, whereas the subpanel

layout renders the actual subpanel widget.

An example of a stock module's subpanels layout is:

84 /2.508

./modules/Bugs/clients/base/layouts/subpanels/subpanels.php
<?php

$vi ewdef s[' Bugs'][' base']['layout'][' subpanels'] = array (
' conponents' => array (
array (
"layout' => 'subpanel’,
"label' => 'LBL_DOCUMENTS SUBPANEL_ TI TLE',
‘context' => array (
"link' => "docunents',
),
)
array (
"layout' => 'subpanel’,
"l abel' => 'LBL_CONTACTS SUBPANEL_ TI TLE',
‘context' => array (
"link' => 'contacts',
)
),
array (
"layout' => 'subpanel’,
"label' => 'LBL_ACCOUNTS SUBPANEL TITLE',
‘context' => array (
"link' => "accounts',
),
)
array (
"l ayout' => 'subpanel’,
"label' => 'LBL_CASES SUBPANEL TI TLE',
‘context' => array (
"link' => "'cases',
)
),
)

ype' => 'subpanels',
‘span’ => 12,

),

You can see that the layout incorporates the use of the subpanel layout for each
module. As most of the subpanel data is similar, this approach allows us to use less
duplicate code. The subpanel layout, shown below, shows the three views that
make up the subpanel widgets users see.

85/2.508

.Jclients/base/layouts/subpanel/subpanel.php
<?php

$vi ewdef s[' base']['layout'][' subpanel'] = array (
‘conponents' => array (
array (
'view => 'panel-top',
)
array (
'view => 'subpanel-list',
),
array (
'view => "'list-bottom,
)
),
‘span' => 12,
"last_state' => array(
"id" => "'subpanel'

),

Adding Subpanel Layouts

When a new relationship is deployed from Studio, the relationship creation process
will generate the layouts using the extension framework. You should note that for
stock relationships and custom deployed relationships, layouts are generated for
both Sidecar and Legacy MVC Subpanel formats. This is done to ensure that any
related modules, whether in Sidecar or Backward Compatibility mode, display a
related subpanel as expected.

Sidecar Layouts

Custom Sidecar layouts, located in
.Jcustom/Extension/modules/<module>/Ext/clients/<client>/layouts/subpanels/,
are compiled into ./custom/modules/<module>/Ext/clients/<client>/layouts/subpan
els/subpanels.ext.php using the extension framework. When a relationship is
saved, layout files are created for both the "base" and "mobile" client types.

For example, deploying a 1:M relationship from Bugs to Leads will generate the
following Sidecar files:

.Jcustom/Extension/modules/Bugs/Ext/clients/base/layouts/subpanels/bugs leads 1

86 /2.508

~Bugs.php
<?php

$vi ewdef s[' Bugs'][' base'][' | ayout'][’ subpanels'][' conponents'][] = arr
ay (

"l ayout' => 'subpanel’,

"label' => 'LBL_BUGS LEADS 1 FROM LEADS TI TLE',

‘context' =>

array (

"link' => "bugs |eads 1',

),

)

.Jcustom/Extension/modules/Bugs/Ext/clients/mobile/layouts/subpanels/bugs leads
1 Bugs.php

<?php

$vi ewdef s[" Bugs']['nmobile']['layout'][' subpanel s'][' conponents'][] = a
rray (

"layout' => 'subpanel’,

‘label' => 'LBL_BUGS_LEADS 1 FROM LEADS TI TLE',

‘context' =>

array (

"link' => "bugs |eads_1',

)

);

Note: The additional legacy MVC layouts generated by a relationships deployment
are described below.

Legacy MVC Subpanel Layouts

Custom Legacy MVC Subpanel layouts, located in
.Jcustom/Extension/modules/<module>/Ext/Layoutdefs/, are compiled into
.Jcustom/modules/<module>/Ext/Layoutdefs/layoutdefs.ext.php using the
extension framework. You should also note that when a relationship is saved,
wireless layouts, located in
.Jcustom/Extension/modules/<module>/Ext/WirelessLayoutdefs/, are created and
compiled into ./custom/modules/<module>/Ext/Layoutdefs/layoutdefs.ext.php.

87/2.508

An example of this is when deploying a 1-M relationship from Bugs to Leads, the
following layoutdef files are generated:

.Jcustom/Extension/modules/Bugs/Ext/Layoutdefs/bugs leads 1 Bugs.php
<?php

$|ayout _defs["Bugs"]["subpanel _setup”]['bugs_leads_1'] = array (
‘order' => 100,
"nmodul e => ' Leads',
' subpanel _nanme' => 'defaul t'
‘sort_order' => 'asc',
"sort_by' =>"'id",
"title_key' => 'LBL_BUGS LEADS 1 FROM LEADS TI TLE' ,
'get _subpanel data' => 'bugs leads 1',
"top_buttons' =>
array (
0 =>
array (
"wi dget _class' => ' SubPanel TopButt onQui ckCreate',
)
1 =
array (
"wi dget _class' => ' SubPanel TopSel ect Button',
"mode' => "Ml ti Sel ect"’

),

.Jcustom/Extension/modules/Bugs/Ext/WirelessLayoutdefs/bugs leads 1 Bugs.php
<?php

$|ayout _defs["Bugs"]["subpanel _setup”]['bugs_leads_1'] = array (
"order' => 100,
"modul e => ' Leads',
' subpanel _nanme' => 'defaul t'
"title key' =>"'LBL_BUGS LEADS 1 FROM LEADS TI TLE',
'get _subpanel data' => 'bugs leads 1',

Fields Metadata

88/2.508

Sidecar's subpanel field layouts are initially defined by the subpanel list-view
metadata.

Hierarchy Diagram

The subpanel list metadata is loaded in the following manner:

Joustomimodules/=module=iclients/<client=views/subpanel-for-<link=/subpanel-for-<link=.php ‘

If nct found, loads

‘ Jmodules/=modulesfclients/<client=Niews/subpanel-for-<link=/subpanel-for-<link=.php ‘

If not found, loads

Joustomimodules/=module=fclients/<client=views/subpanel-listsubpanel-listphp ‘

If not found, loads

Jmodulesicmodules/clientsi<client=Nviewsisubpanel-list'subpanel-listphp ‘

If not found, loads

Joustomiclientsi<client=viewsisubpanel-list'subpanel-list.php ‘

If nt found, loads

Jclientsi=client=views/subpanel-listsubpanel-lisLphp ‘

Note: The Sugar application's client type is "base". For more information on the
various client types, please refer to the User Interface page.

Subpanel List Views

By default, all modules come with a default set of subpanel fields for when they are
rendered as a subpanel. An example of this is can be found in the Bugs module:

./modules/Bugs/clients/base/views/subpanel-list/subpanel-list.php
<?php
$subpanel layout['list fields'] = array (

"full _nanme' =>

array (
"type' => 'fullnane',

89/2.508

"link' => true,
"studio =>
array (
"listview => fal se,
)
"vnane' => 'LBL_NAME
'width' => "10%,
"default' => true,
)
'date_entered =>
array (
"type' => 'datetine',
"studio =>
array (
"portaleditview => false,
),
"readonly' => true,
"vnanme' => 'LBL_DATE_ENTERED
"width' => "10%,
"default' => true,

)

efered_by' =>

array (

"vhane' => 'LBL_LI ST _REFERED BY',
'width' => "10%,

"default' => true,

)

"l ead_source' =>

array (
"vhane' => 'LBL_LI ST _LEAD SOURCE',
'width' => "10%,
"default' => true,

)

' phone_wor k' =>

array (
"vhane' => 'LBL_LI ST _PHONE',
'width' => "10%,
"default' => true,

)

‘| ead_source_description' =>
array (

"nane' => '|ead_source_description',
‘vhame' => 'LBL_LI ST_LEAD SOURCE_DESCRI PTI ON

"width' => "'10%,
"sortable' => fal se,
"default' => true,

90/2.508

)

ssi gned_user_nane' =>
array (
"nane' => 'assigned_user_nane',
‘vhame' => 'LBL_LI ST_ASSI GNED_TO NAME' ,
"wi dget _class' => ' SubPanel Det ai | Vi ewLi nk' ,
"target _record _key' => 'assigned user_id',
"target _nodul e => ' Enpl oyees',
‘width' =>"'10%,
"default' => true,

)

irst_name' =>
array (
‘usage' => 'query_only",

)

ast _nane' =>
array (
‘usage' => 'query_only",

)

alutation' =>

array (

"nanme' => 'salutation',
‘usage' => 'query_only",

),

To modify this layout, navigate to Admin > Studio > {Parent Module} > Subpanels
> Bugs and make your changes. Once saved, Sugar will generate ./custom/modules
/Bugs/clients/<client>/views/subpanel-for-<link>/subpanel-for-<link>.php which
will be used for rendering the fields you selected.

You should note that, just as Sugar mimics the Sidecar layouts in the legacy MVC
framework for modules in backward compatibility, it also mimics the field list in
./modules/<module>/metadata/subpanels/default.php and
.Jcustom/modules/<module>/metadata/subpanels/default.php. This is done to
ensure that any related modules, whether in Sidecar or Backward Compatibility
mode, display the same field list as expected.

Dashlets

Overview

91/2.508

Dashlets are special view-component plugins that render data from a context and
make use of the Dashlet plugin. They are typically made up of a controller
JavaScript file (.js) and at least one Handlebars template (.hbs).

Hierarchy Diagram

Sugar loads the dashlet view components in the following manner:

‘ Jeustom/modules/=module=fclients/=client=fviews/ ‘

If not found, leads

‘ Jmodulesfzmodule=/clientsisclient=fviews/ ‘

If not found, leads

‘ Jeustamiclientsi<client=fiews/ ‘

If not found, loads

‘ Jelients/=client=fviews/ ‘

Note: The Sugar application's client type is "base". For more information on the
various client types, please refer to the User Interface page.

Dashlet Views

The are three views when working with dashlets: Preview, Dashlet View, and
Configuration View. The following sections discuss the differences between views.

Preview

The preview view is used when selecting dashlets to add to your homepage.
Preview variables in the metadata will be assigned to the custom model variables.

"preview => array(

"keyl' => 'valuel',

),

The values in the preview metadata can be retrieved using:

t hi s. nodel . get ("keyl1");

92 /2.508

Sidebar Pane

DashletPreview

reniew
p View

select and edit CCD

Dashlet View

The dashlet view will render the content for the dashlet. It will also contain the
settings for editing, removing, and refreshing the dashlet.

Dashlet-headerpane 1]

) Edit
Dashlet view Remove

Configuration View

The configuration view is displayed when a user clicks the 'edit' option on the
dashlet frame's drop-down menu. Config variables in the metadata will be assigned
to the custom model variables

‘config' => array(
/'l key value pairs of attributes
'keyl' => 'valuel',

93/2.508

The values in the config metadata can be retrieved using:

t hi s. nodel . get ("key1");

Dashlet title

Cancel

Configuration view

Dashlet Example

The RSS feed dashlet, located in ./clients/base/views/rssfeed/, handles the display
of RSS feeds to the user. The sections below outline the various files that render

this dashlet.

Metadata

The Dashlet view contains the 'dashlets' metadata:

Parameters

Type

Required

Description

label

String

yes

The name of the
dashlet

94 /2.508

description String no A description of the

dashlet

config Object yes Pre-populated

variables in the
configuration view
Note: Config
variables in the
metadata

are assigned to the
custom model

variables.
preview Object yes Pre-populated
variables in the
preview
filter Object no Filter for display

The RSS feed dashlets metadata is located in:

.Jclients/base/views/rssfeed/rssfeed.php

<?php

/*

* Your installation or use of this SugarCRMfile is subject to the ap
pli cabl e

* terns avail abl e at

* http://support.sugarcrm conl Resources/ Mast er _Subscri pti on_Agreenent
s/ .

* | f you do not agree to all of the applicable terns or do not have t
he

* authority to bind the entity as an authorized representative, then
do not

* install or use this SugarCRMfile.

* Copyright (C SugarCRM Inc. Al rights reserved.

*/
$vi ewdef s[' base']['view]['rssfeed'] = array(

"dashl ets' => array(
array(
‘label’ =>'LBL_RSS FEED DASHLET',
"description' =>"'LBL_RSS FEED DASHLET DESCRI PTI ON ,
‘config' => array(
‘limt' => 5,
"auto_refresh' => 0,

95/2.508

),

"preview => array(

"“limt' => 5
"auto_refresh' => 0,
"feed url" => "http://blog.sugarcrmcom feed/",
),
)
),
"panel s’ => array(
array(
"nanme' => 'panel body',
‘col ums' => 2,
"| abel sOnTop' => true,
' pl acehol ders' => true,
"fields' => array(
array(
"nanme' => 'feed url"',
"label' => '"LBL_RSS FEED URL',
‘type’ => "text',
"span' => 12,
"required => true,
),
array(
"name' =>'limt",
‘label’ => 'LBL_RSS _FEED ENTRI ES_COUNT' ,
"type' => 'enunm,
"options' => "tasks_|imt_options',
),
array(
"nane' => 'auto_refresh',
‘label' => 'LBL_DASHLET REFRESH LABEL',
"type' => 'enunm,
"options' => 'sugar7_dashlet reports_auto refresh_
options',
)
),
)
),
)
Controller

The rssfeed.js controller file, shown below, contains the JavaScript to render the
news articles on the dashlet. The Dashlet view must include 'Dashlet' plugin and

96 /2.508

can override initDashlet to add additional custom process while it is initializing.

.Jclients/base/views/rssfeed/rssfeed.js

/*

*

Your installation or use of this SugarCRMfile is subject to the ap

plicabl e

* terns avail abl e at

* http://support.sugarcrm com Resour ces/ Mast er _Subscri pti on_Agr eenent
s/ .

* |f you do not agree to all of the applicable terns or do not have t
he

* authority to bind the entity as an authorized representative, then
do not

* install or use this SugarCRM file.

*

* Copyright (C SugarCRM Inc. Al rights reserved.

*/

/**

* RSS Feed dashl et consunmes an RSS Feed URL and displays it's content
as a list

* of entries.

*

* The following itens are configurable.

*

* - {nunber} limt Limt inposed to the nunber of records pull ed.

* - {nunber} refresh How often (m nutes) should refresh the data coll
ection.

*

* @l ass View. Vi ews. Base. Rssf eedVi ew

* @lias SUGAR. App.vi ew. vi ews. BaseRssf eedVi ew

* @xtends View View

*/

({

plugins: ['Dashlet'],

/**

* Default options used when none are supplied through netadat a.

*

* Supported options:
* - timer: How often (m nutes) should refresh the data collection

* - limt: Limt inposed to the nunber of records pulled.

* @roperty {Object}
* @rotected

97 /2.508

*/
_defaul tOptions: {
limt: 5,
auto _refresh: 0

1
/**
* @nheritdoc
*/
initialize: function(options) {
options.neta = options.neta || {};
this. super('initialize , [options]);
this. | oadDat a(opti ons. neta);
b
/**

* Init dashlet settings
*/
initDashlet: function() {
/1 We only need to handle this if we are NOT in the configure
screen
if ('this.nmeta.config) {
var options = {};
var self = this;
var refreshRate;

/[l Get and set values for |limts and refresh

options.limt = this.settings.get('limt") || this. _defau
tOptions. limt;

this.settings.set('limt', options.limt);

options.auto_refresh = this.settings.get('auto_refresh') |
| this. _defaultOptions.auto_refresh;
this.settings.set('auto_refresh', options.auto refresh);

/1l There is no default for this so there's no pointing in
setting fromit
options.feed url = this.settings.get('feed url"');

/1l Set the refresh rate for setlnterval so it can be check
ed ahead

[/ of time. 60000 is 1000 mliseconds tines 60 seconds in
a mnute.

refreshRate = options.auto_refresh * 60000;

/1 Only set up the interval handler if there is a refreshR

98 /2.508

at e hi gher
/1l than O
if (refreshRate > 0) {
if (this.timerld) {
clearinterval (this.tinerld);
}
this.timerld = setlnterval (_.bind(function() {
if (self.context) {
sel f. context.reset LoadFl ag() ;
sel f. | oadDat a(opti ons);

}
}, this), refreshRate);

}

/1 Validation handling for individual fields on the config
this.layout. before('dashl etconfig:save', function() {
/1l Fields on the netadata

var fields = _.flatten(_.pluck(this.nmeta.panels, '"fields")
);
/1 Grab all non-valid fields fromthe node
var notValid = .filter(fields, function(field) {
return field.required & !'this.dashModel . get(field. nam
e);
}, this);
/1 1f there no invalid fields we are good to go
if (notvValid.length === 0) {
return true;
}
[l O herw se handle notification of invalidation
_.each(notValid, function(field) {
var fieldOnView = _.find(this.fields, function(conp,
cid) {
return conp. nane === fiel d. nane;
1)

fiel dOnView. nodel .trigger('error:validation:' + field
.name, {required: true});
}, this);

/! False return tells the drawer that it shouldn't close
return fal se;
}, this);

99/2.508

b

/**

* Handl es the response of the feed consunption request and sets d
ata from
* the result
* @aram {Obj ect} data Response fromthe rssfeed APl cal
*/
handl eFeed: function (data) {
if (this.disposed) {
return;

}

/1l Load up the tenplate
_.extend(this, data);
this.render();

}

/**

* Loads an RSS feed fromthe RSS Feed endpoi nt.
* @aram {Qbject} options The netadata that drives this request
*/
| oadDat a: function(options) {
if (options && options.feed url) {

var call backs = {success: _.bind(this.handl eFeed, this), e
rror: _.bind(this.handl eFeed, this)},
limt = options.limt || this. _defaultOptions.limt,
parans = {feed url: options.feed url, limt: limt},
api Ul = app.api.buil dURL(' rssfeed', 'read', '', param
s);
app.api.call('read', apiUl, {}, callbacks);
}
|
/**

* @nheritdoc

*

* New nodel related properties are injected into each nodel

*

* - {Bool ean} overdue True if record is prior to now.
*/
_renderHtm : function() {
if (this.neta.config) {

100/ 2.508

this. super(' _renderHm"');

return;

}

this. super(' _renderHm');

})

Workflow

When triggered, the following procedure will render the view area:

initialize }—’

initDashlet(‘config") }"

loadData({params) }—» _render

Retrieving Data

|

|

Use the following commands to retrieve the corresponding data:

Data Location

Element

Command

Main pane

Record View

this.model

Record View

this.context.parent.get("m
odel")

List View

this.context.parent.get("co
llection")

Metadata

this.dashletConfig['metada
ta key']

Module vardefs

app.metadata.getModule("
ModuleName")

Remote data

Bean

new app.data.createBean(
"Module")

new app.data.createBeanC
ollection("Module")

RestAPI

app.api.call(method, url,
data, callbacks, options)

Ajax Call

$.ajax()

User inputs

this.settings.get("custom
key")

101/2.508

Handlebar Template

The rssfeed.hbs template file defines the content of the view. This view is used for
rendering the markup rendering in the dashlet content.

.Jclients/base/views/rssfeed/rssfeed.hbs

{{t--
/*
* Your installation or use of this SugarCRMfile is subject to the ap
pli cabl e
* terns avail abl e at
* http://support.sugarcrm conl Resources/ Mast er _Subscri pti on_Agreenent
s/ .
* | f you do not agree to all of the applicable terns or do not have t
he
* authority to bind the entity as an authorized representative, then
do not
* install or use this SugarCRMfile.
* Copyright (C SugarCRMInc. Al rights reserved.
*/
--}}
{{#i f feed}}
<div class="rss-feed">
<h4>
{{#if feed.link}}{{/if}}
{{feed. title}}
{{#if feed.link}}{{/if}}
</ h4>

{{#each feed.entries}}
<li class="news-article">
{{title}}
{{#if author}} - {{str "LBL_RSS FEED AUTHOR'}} {{autho

riy{{/if}}

{{/each}}
</ ul >
</ di v>
{{el se}}

<di v class="bl ock-footer">
{{#i f errorThrown}}
{{str "LBL_NO DATA AVAI LABLE"}}

102 /2.508

{{el se}}
{{l oading 'LBL_ALERT TI TLE LQADI NG }}

{{/11}}

</ div>

{{/11}}

Drawers

Overview
The drawer layout widget, located in ./clients/base/layouts/drawer/, is used to

display a window of additional content to the user. This window can then be closed
to display the content the user was previously viewing.

Methods
app.drawer.open(layoutDef, onClose)

The app.drawer.open(layoutDef, onClose) method displays a new content window
over the current view.

Parameters

Name Required Description

layoutDef.layout yes The id of the layout to
load.

layoutDef.context no Additional data you would
like to pass to the drawer.
Data passed in can be
retrieved from the view
using:

this.context.get('<data
key>");

Note: Be very careful
about what you pass in as
data to the drawer. As the
data is passed in by
reference, when the
drawer is closed, the
context is destroyed.

onClose no Optional callback handler

103/2.508

for when the drawer is
closed.

Example

app. dr awer . open({
| ayout: 'ny-layout',
context: {
nyDat a: data
},
|

function() {

//on close, throw an al ert
alert('Drawer closed.');

1)

app.drawer.close(callbackOptions)

The app.drawer.close(callbackOptions) method dismisses the topmost drawer.

Parameters
Name Required Description
callbackOptions no Any parameters passed

into the close method will
be passed to the callback.

Standard Example

app. drawer. cl ose();

Callback Example

/I open drawer
app. drawer . open({

| ayout: 'ny-layout',
b

functi on(nmessagel, nessage2) {

al ert (nmessagel);
al ert (nmessage?);

1),

//cl ose drawer

104 /2.508

app. drawer. cl ose(' nessage 1', 'nessage 2');

app.drawer.load (options)

Loads a new layout into an existing drawer.

Parameters

Name

Description

options.layout

The id of the layout to load.

Example

app. drawer . | oad({
| ayout: ' ny-second-|ayout’,

1)

app.drawer.reset(triggerBefore)

The app.drawer.reset(triggerBefore) method destroys all drawers at once. By
default, whenever the application is routed to another page, reset() is called.

Parameters

Name Required Description

triggerBefore no Determines whether to
triggerBefore. Defaults to
false.

Example

app. drawer.reset();

Alerts

Overview

The alert view widget, located in ./clients/base/views/alert/, displays helpful
information such as loading messages, notices, and confirmation messages to the

user.

105/ 2.508

Methods

app.alert.show(id, options)

The app.alert.show(id, options) method displays an alert message to the user with

the options provided.

Parameters
Name Description
id The id of the alert message. Used for

dismissing specific messages.

options.level

The alert level

options.title

The alert's title, which corresponds to
the alert's level

options.messages

The message that the user sees
Note: Process alerts do not display
messages.

options.autoClose

Whether or not to auto-close the alert
popup

options.onClose

Callback handler for closing
confirmation alerts when clicking the x

options.onConfirm

Callback handler for confirming
confirmation alerts

options.onCancel

Callback handler for canceling
confirmation alerts

options.onLinkClick

Callback handler for click actions on a
link inside of the alert

Default Alert Values

Alert Level Alert Appearance Alert Title
info blue "Notice"
success green "Success"
warning yellow "Warning!"
error red "Error"
process loading message "Loading..."
confirmation confirmation dialog "Warning"

Alert Examples

106 / 2.508

Standard Alert

app. al ert.show(' nessage-id',
| evel : 'success',

{

nmessages: ' Task conpl eted!"',

aut oCl ose: true

1)

Confirmation Alert

app. al ert. show' nessage-id',
| evel : 'confirmation',
nmessages: ' Confirn®',
aut oCl ose: fal se,
onConfirm function(){
alert("Confirmed!");
},
onCancel : function(){
alert("Cancelled!");

}
1),

Process Alert

app. al ert.show(' nessage-id',

| evel : ' process',

{

{

title: "In Process...' //change title to nodify display from' Load

ing...'

1)

app.alert.dismiss(id)

The app.alert.dismiss(id) method dismisses an alert message from view based on

the message id.

Parameters

Name Description

id The id of the alert message to dismiss.
Example

107 /2.508

app. al ert.di smss(' nessage-id');

app.alert.dismissAll
The app.alert.dismissAll dismisses all alert messages from view.
Example

app.alert.dismssAll();

Testing in Console

To test alerts, you can trigger them in your browser's developer tools by using the
global App variable as shown below:

App. al ert.show(' nessage-id', {
| evel : 'success',
nmessages: ' Successful!',
aut oCl ose: fal se

1)

Language
Overview

The language library, located in ./sidecar/src/core/language.js, is used to manage
the user's display language as well as fetch labels and lists. For more information
on customizing languages, please visit the language framework documentation.

Methods

app.lang.get(key, module, context)

The app.lang.get(key, module, context) method fetches a string for a given key.
The method searches the module strings first and then falls back to the app
strings. If the label is a template, it will be compiled and executed with the given

context.

Parameters

108 /2.508

Name Required Description

key yes The key of the string to
retrieve

module no The Sugar module that the
label belongs to

context no Template context

Example

app. l ang. get (' LBL_NAME', ' Accounts');

app.lang.getAppString(key)

The app.lang.getAppString(key) method retrieves an application string for a given

key.

Parameters

Name Required Description

key yes The key of the string to
retrieve

Example

app. | ang. get AppStri ng(' LBL_MODULE') ;

app.lang.getAppListStrings(key)

The app.lang.getAppListStrings(key) method retrieves an application list string or
object.

Parameters

Name Required Description

key yes The key of the string to
retrieve

Example

app. | ang. get AppLi st Strings(' sal es_stage_dom);

109/ 2.508

app.lang.getModuleSingular(moduleKey)

The app.lang.getModuleSingular(moduleKey) method retrieves an application list
string or object.

Parameters

Name Required Description

moduleKey yes The module key of the
singular module label to
retrieve

Example

app. | ang. get Modul eSi ngul ar (" Accounts");

app.lang.getLanguage()
The app.lang.getLanguage() method retrieves the current user's language key.
Example

app. | ang. get Language() ;

app.lang.updateLanguage(languageKey)

The app.lang.updateLanguage(languageKey) method updates the current user's
language key.

Parameters

Name Required Description

languageKey yes Language key of the
language to set for the
user

Example

app. | ang. updat eLanguage(' en_us');

110/2.508

Testing in Console

To test out the language library, you can trigger actions in your browsers
developer tools by using the global Apps variable as shown below:

App. | ang. get AppLi st Strings(' sal es_stage_dom);

MegaMenu

Overview

The MegaMenu is the header navigation bar located at the top of every Sugar
page. It is the primary tool used to navigate the front end of the Sugar application.

Accounts Contacts Opportunities v 1 @ +

Layout Components

The MegaMenu layout, located in ./clients/base/layouts/header/header.php,

is composed of the module-list and quicksearch layouts as well as the notifications,
profileactions and quickcreate views. To customize these components, you can
create your own layout override in
.Jcustom/clients/base/layouts/header/header.php to reference your own custom
components.

Link Actions

The following properties define the navigation, display, and visibility of all links in
the system:

Name Description

acl action The ACL action is used to verify the user
has access to a specific action required
for the link

acl module The ACL module is used to verify if the
user has access to a specific module
required for the link

icon The bootstrap icon to display next to the
link (the full list of icons are listed in
Admin > Styleguide > Core Elements >

111/2.508

Base CSS > Icons)

label

The label key that contains your link's
display text

openwindow

Specifies whether or not the link
should open in a new window

route

The route to direct the user. For sidecar
modules, this is

#<module>, but modules in backward
compatibility mode are routed as
#bwc/index.php?module=<module>.
Note: External links require the full
URL as well as openwindow set to true.

submenu

An array of sub-navigation links
Note: Sub-navigation links contain
these same basic link properties.

Module Links

Module links are the top-level links for each available module, represented as tabs
in the navigation bar (or, sometimes, the overflow menu). When a top-level link is
clicked, the user is directed to the selected module's list view layout. These top-
level links are also expandable elements that contain sub-navigation menu links,
which are outlined in the following section.

Module Action Links

The module action links are displayed to the user when they click the down arrow

next to a module link.

112 /2.508

. v Accounts v | Contacts Opportunities Leads v 1 @ +

+ Create Account .

= View Accounts

Il View Account Reports

® Import Accounts

Adding Module Action Links

The example below demonstrates how to add a module action link that points to
the Leads module. To define your own module action link, you must create your
own label extension for the link's display label:

.Jcustom/Extension/application/Ext/Language/en us.addModuleLink.php
<?php

//create the links | abel
$app_strings[' LNK_ LEADS C] = 'View Leads';

Now create the module action link extension:

.Jcustom/Extension/modules/<module>/Ext/clients/base/menus/header/addModule
Link.php

<?php

$vi ewdef s[' <nmodul e>'][' base'][' nenu'][' header'][] = array(
"route' =>' #Leads',
"label' =>'"LNK LEADS C ,
"acl _nodul e' =>' Leads',
‘icon' => 'icon-user',

113/2.508

Once you have created the extension files, navigate to Admin > Repair > Quick
Repair and Rebuild. This will append your profile action item to the existing list of
links.

Note: You may need to refresh the page to see the new profile menu items.
Removing Module Action Links

To remove a module action link, loop through the list of module actions and
remove the item by one of its properties. For your reference, the stock
module actions can be found in
./modules/<module>/clients/base/menus/header/header.php.

.Jcustom/Extension/modules/<module>/Ext/clients/base/menus/header/removeMod
uleLink.php

if (isset($viewdefs['<nmodule>"]["'base']['nenu'][' header'])) {
foreach ($viewdefs[' <npodul e>'][' base'][' menu'][’ header'] as $key =
> $nodul eAction) {
[lremove the link by | abel key
if (in_array($nodul eAction['label'], array('<link |abel key>")

)) |
1);

unset ($vi ewdef s[' <npdul e>'][' base'][' nenu'] [' header'][$key

Once you have created the extension files, navigate to Admin > Repair > Quick
Repair and Rebuild. This will remove the menu action item from the existing list of
links.

Note: You may need to refresh the page to see the module menu items removed.
Profile Action Links

Profile actions are the links listed under the user's profile menu on the right side of
the MegaMenu. Profile action extension files are located

in ./custom/Extension/application/Ext/clients/base/views/profileactions/ and are
compiled into

114 /2.508

.Jcustom/application/Ext/clients/base/views/profileactions/profileactions.ext.php.

. v Accounts Contacts Opportunities Leads v 1 @ v -I-

D Profile

“n»

% Employees
£ Administration
@ About

® Log Out

Adding Profile Action Links

The example below demonstrates how to add a profile action link to the Styleguide.
To define your own profile action link, create your own label extension for the
link's display label.

.Jcustom/Extension/application/Ext/Language/en us.addProfileActionLink.php
<?php

[lcreate the |inks | abel
$app_strings[' LNK_STYLEGQU DE_C] = 'Styl eguide';

Next, create the profile action link extension:

.Jcustom/Extension/application/Ext/clients/base/views/profileactions/addProfileActi
onLink.php

<?php

115/2.508

$vi ewdef s[' base']['view]['profileactions'][] = array(
"route' => '#Styl eguide',
‘label' => ' LNK_STYLEGUI DE_C ,
“icon' => 'icon-link',

Once you have created the extension files, navigate to Admin > Repair > Quick
Repair and Rebuild. This will append your profile action item to the existing list of
links.

Note: You may need to refresh the page to see the new profile menu items.
Removing Profile Action Links

To remove a profile action link, loop through the list of profile actions and remove
the item by one of its properties. For your reference, the stock profile actions can
be found in ./clients/base/views/profileactions/profileactions.php.

.Jcustom/Extension/application/Ext/clients/base/views/profileactions/removeProfile
ActionLink.php

<?php

if (isset($viewdefs[' base']['view]['profileactions'])) {
foreach ($viewdefs[' base']['view][' profileactions'] as $key => $p
rofileAction) {
/lrenmove the link by | abel key
if (in_array($profileAction['label'], array('LNK_ABOUT"))) {
unset ($vi ewmdef s[' base'J['view][' profileactions'][$key]);
}

Once you have created the extension files, navigate to Admin > Repair > Quick
Repair and Rebuild. This will remove the profile action item from the existing list
of links.

Note: You may need to refresh the page to see the profile menu items removed.

Administration Links

116 /2.508

Overview

Administration links are the shortcut URLs found on the Administration page in the
Sugar application. Developers can create additional administration links using the
extension framework.

The global links extension directory is located at
.Jcustom/Extension/modules/Administration/Ext/Administration/. After a Quick
Repair and Rebuild, the PHP files in this directory are compiled into
.Jcustom/modules/Administration/Ext/Administration/administration.ext.php.
Additional information on this can be found in the extensions Administration
section of the Extension Framework documentation. The current links defined in
the administration section can be found in
./modules/Administration/metadata/adminpaneldefs.php.

Example

The following example will create a new panel on the Admin page:

.Jcustom/Extension/modules/Administration/Ext/Administration/<file>.php
<?php

$adm n_option_defs = array();
$adm n_option_defs[' Admi nistration'][' <section key>'] = array(
//1con nanme. Available icons are located in ./thenes/defaul t/i
mages
"Adm ni stration',

/1 Li nk nane | abel
"LBL_LI NK_NAME',

/1 Link description | abel
"LBL_LI NK_DESCRI PTI ON

/ILink URL - For Sidecar nodul es
"javascri pt:voi d(parent. SUGAR. App. rout er. navi gat e(" <nodul e>/ <p
ath>", {trigger: true}));",

/I Al'ternatively, if you are linking to BW nodul es
/1" ./1index. php?nodul e=<nodul e>&acti on=<acti on>',

)

$adm n_group_header[] = array(
/] Section header | abel

117 /2.508

' LBL_SECTI ON_HEADER ,

/] $ot her _text paranmeter for get form header()

/1 $show_hel p paraneter for get_form header()
fal se,

/1 Section |inks
$admi n_option_def s,

/1 Section description | abel
' LBL_SECTI ON_DESCRI PTI ON'

),

To define labels for administration links in the new panel:
.Jcustom/Extension/modules/Administration/Ext/Language/en us.<name>.php
<?php
$nmod_strings[' LBL_LINK_ NAME'] = 'Link Nane';
$nod_strings['LBL_LINK DESCRIPTION'] = 'Link Description';

$nmod_strings[' LBL_SECTI ON_ HEADER] = ' Secti on Header"';
$nod_strings[' LBL_SECTI ON DESCRI PTION'] = 'Section Description';

Finally, navigate to Admin > Repair > Quick Repair and Rebuild. The system will
then rebuild the extensions and the panel will appear on the Admin page.

Legacy MVC

Overview

The legacy MVC Architecture.

You should note that the MVC architecture is being deprecated and is being

replaced with sidecar. Until the framework is fully deprecated, modules set in
backward compatibility mode will still use the MVC framework.

Model-View-Controller (MVC) Overview

118/2.508

A model-view-controller, or MVC, is a design philosophy that creates a distinct
separation between business-logic and display logic.

e Model : This is the data object built by the business/application logic
needed to present in the user interface. For Sugar, it is represented by the
SugarBean and all subclasses of the SugarBean.

e View : This is the display layer which is responsible for rendering data
from the Model to the end-user.

e Controller : This is the layer that handles user events such as "Save" and
determines what business logic actions to take to build the model, and
which view to load for rendering the data to end users.

SugarCRM MVC Implementation

The following is a sequence diagram that highlights some of the main components
involved within the Sugar MVC framework.

SugarApplicaton SugarController

‘ ViewFactory ‘ ‘ SugarView ‘

—— ConfrollerFaciory getControlier—»

- contraller

Caontroller-=execute—»

—_—
process
. -
—
—_—
. processView
. -
-

ViewFactory: bﬂd\."im-r—bé

vigw

R

ViEW-=Drocess >
' . T .
Call internal functions
. s
b
’ By
Call display methods
. -
b

View

Overview

119/2.508

Displaying information to the browser.

What are Views?

Views, otherwise known as actions, are typically used to render views or to process
logic. Views are not just limited to HTML data. You can send JSON encoded data
as part of a view or any other structure you wish. As with the controllers, there is a
default class called SugarView which implements much of the basic logic for views,
such as handling of headers and footers.

There are five main actions for a module:

e Display Actions

o Detail View: A detail view displays a read-only view of a particular
record. Usually, this is accessed via the list view. The detail view
displays the details of the object itself and related items
(subpanels).

Subpanels are miniature list views of items that are related to the
parent object. For example, Tasks assigned to a Project, or Contacts
for an Opportunity will appear in subpanels in the Project or
Opportunity detail view. The file
./<module>/metadata/detailviewdefs.php defines a module's detail
view page layout. The file ./<module>/metadata/subpaneldefs.php
defines the subpanels that are displayed in the module's detail view
page.

o Edit View: The edit view page is accessed when a user creates a
new record or edits details of an existing one. Edit view can also be
accessed directly from the list view. The file
./<module>/metadata/editviewdefs.php defines a module's edit view
page layout.

o List View: This Controller action enables the search form and
search results for a module. Users can perform actions such as
delete, export, update multiple records (mass update), and drill into
a specific record to view and edit the details. Users can see this
view by default when they click one of the module tabs at the top of
the page. Files in each module describe the contents of the list and
search view.

e Process Actions

o Save: This Controller action is processed when the user clicks Save
in the record's edit view.

o Delete: This action is processed when the user clicks "Delete" in
the detail view of a record or in the detail view of a record listed in
a subpanel.

Implementation

120/2.508

Class File Structure

Jinclude/MVC/Views/SugarView.php
Jinclude/MVC/Views/view.<view>.php
.JJcustom/include/MVC/Views/view.<view>.php
./modules/<module>/views/view.<view>.php
.Jcustom/modules/<module>/views/view.<view>.php

Class Loading

The ViewFactory class loads the view based off the the following sequence
loading the first file it finds:

.Jcustom/modules/<module>/views/view.<view>.php
./modules/<module>/views/view.<view>.php
.Jcustom/include/MVC/View/view.<view>.php
Jinclude/MVC/Views/view.<view>.php

Methods

There are two main methods to override within a view:

e preDisplay(): This performs pre-processing within a view. This method is
relevant only for extending existing views. For example, the
include/MVC/View/views/view.edit.php file uses it, and enables developers
who wishes to extend this view to leverage all of the logic done in
preDisplay() and either override the display() method completely or within
your own display() method call parent::display().

e display(): This method displays the data to the screen. Place the logic to
display output to the screen here.

Creating Views
Creating a new/view action consists of a controller action and a view file. The first
step is to define your controller action. If the module does not contain a
controller.php file in ./modules/<module>/ you will create the following file:
.Jcustom/modules/<module>/controller.php

<?php
cl ass <nodul e>Control | er extends SugarController

{
function action_M/View)

{

121/2.508

$thi s->view = ' nyview ;

More information on controllers can be found in the Controller section.

The next step is to define your view file. This example extends the ViewDetail class
but you can extend any of the classes you choose in ./include/MVC/View/views/.

.Jcustom/modules/<module>/views/view.newview.php
<?php
requi re_once 'include/ WC/ Vi ew vi ews/ vi ew. det ai | . php' ;

cl ass <nodul e>Vi ew Vi ew ext ends Vi ewDet ai |

{
function display()
{
echo '"This is ny new viewbr>';
}
}

Overriding Views

The following section will demonstrate how to extend and override a view. When
overriding existing actions and views, you won't need to make any changes to the
controller. This approach will be very similar for any view you may choose to
modify. If the module you are extending the view for does not contain an existing
view in its modules views directory (./modules/<module>/views/), you will need to
extend the views base class. Otherwise, you will extend the view class found within
the file.

In the case of a detail view, you would check for the file
./modules/<module>/views/view.detail.php. If this file does not exist, you will
create ./custom/modules/<module>/views/view.detail.php and extend the base
ViewDetail class with the name <module>ViewDetalil.

.Jcustom/modules/<module>/views/view.detail.php

<?php

122 /2.508

require_once('include/ WC/ Vi ew vi ews/ vi ew. det ai | . php') ;

cl ass <nodul e>Vi ewDet ai | ext ends Vi ewDet ai |

{
function display()
{
echo 'This is ny addition to the Detail Vi en
';
[l call parent display nethod
parent: :display();
}
}

If ./modules/<module>/views/view.detail.php does exist, you would create
.Jcustom/modules/<module>/views/view.detail.php and extend the base
<module>ViewDetalil class with the name Custom<module>ViewDetail.
.Jcustom/modules/<module>/views/view.detail.php

<?php
requi re_once(' nodul es/ <nmodul e>/ vi ews/ vi ew. det ai | . php') ;
cl ass Cust onknodul e>Vi ewDet ai | ext ends <nodul e>Vi ewDet ai |

{
function display()

{
echo "This is ny addition to the Detail Vi en
';
/lcall parent display nethod
parent::display();

}

Display Options for Views

The Sugar MVC provides developers with granular control over how the screen
looks when a view is rendered. Each view can have a config file associated with it.
In the case of an edit view, the developer would create the file
.Jcustoms/modules/<module>/views/view.edit.config.php . When the edit view is
rendered, this config file will be picked up. When loading the view, ViewFactory
class will merge the view config files from the following possible locations with

123/2.508

precedence order (high to low):

.Jcustoms/modules/<module>/views/view.<view>.config.php
./modules/<module>/views/view.<view>.config.php
.Jcustom/include/MVC/View/views/view.<view>.config.php
Jinclude/MVC/View/views/view.<view>.config.php

Implementation
The format of these files is as follows:

$view config = array(
‘actions' =>
array(
"popup’ => array(

'show_header' => fal se,
' show_subpanel s’ => fal se,
'show _search' => fal se,
"show footer' => fal se,
'show_JavaScript' => true,

),
),

"reqg_parans' => array(
"to_pdf' => array(
' param val ue' => true,
‘config' => array(
"show all' => fal se

),

To illustrate this process, let us take a look at how the 'popup' action is processed.
In this case, the system will go to the actions entry within the view config and
determine the proper configuration. If the request contains the parameter to pdf,
and is set to be true, then it will automatically cause the show all configuration
parameter to be set false, which means none of the options will be displayed.

Controller

Overview

124 /2.508

The basic actions of a module.

Controllers

The main controller, named SugarController, addresses the basic actions of a
module from EditView and DetailView to saving a record. Each module can
override this SugarController by adding a controller.php file into its directory. This
file extends the SugarController, and the naming convention for the class is:
<module>Controller

Inside the controller, you define an action method. The naming convention for the
method is: action <action name>

There are more fine-grained control mechanisms that a developer can use to
override the controller processing. For example, if a developer wanted to create a
new save action, there are three places where they could possibly override.

e action_save: This is the broadest specification and gives the user full
control over the save process.

e pre_save: A user could override the population of parameters from the
form.

e post_save: This is where the view is being set up. At this point, the
developer could set a redirect URL, do some post-save processing, or set a
different view.

Upgrade-Safe Implementation

You can also add a custom Controller that extends the module's Controller if such
a Controller already exists. For example, if you want to extend the Controller for a
module, you should check if that module already has a module-specific controller.
If so, you extend from that controller class. Otherwise, you extend from
SugarController class. In both cases, you should place the custom controller class
file in ./custom/modules/<module>/Controller.php instead of the module directory.
Doing so makes your customization upgrade-safe.

File Structure

Jinclude/MVC/Controller/SugarController.php
.Jinclude/MVC/Controller/ControllerFactory.php
./modules/<module>/Controller.php
.Jcustom/modules/<module>/controller.php

125/2.508

Implementation

If the module does not contain a controller.php file in ./modules/<module>/, you
will create the following file:

.Jcustom/modules/<module>/controller.php

cl ass <nodul e>Control | er extends SugarController

{
function action_<action>()
{
$t hi s->view = '<action | owercase>';
}
}

If the module does contain a controller.php file, you will need to extend it by doing
the following:

.Jcustom/modules/<module>/controller.php
requi re_once ' nodul es/ <nbdul e>/ control |l er. php';
cl ass Cust onknodul e>Control | er extends <nodul e>Control |l er
{
function action_<action>()

{
}

$t hi s->view = '<action | owercase>';

Note: When creating or moving files you will need to rebuild the file map.

More information on rebuilding the file map can be found in the SugarAutolLoader.

Mapping Actions to Files

You can choose not to provide a custom action method as defined above, and
instead, specify your mappings of actions to files in $action file map. Take a look
at ./include/MVC/Controller/action file map.php as an example:

126 /2.508

$action fil e map[' subpanel viewer'] = 'incl ude/ SubPanel / SubPanel Vi ewer .

php';

$action file map['save2'] = 'include/generic/ Save2. php';
$action_file_map[' del eterelationship'] = "include/generic/DeleteRelati
onshi p. php';

$action_file_map['inport'] = 'nodul es/|nport/index. php';

Here the developer has the opportunity to map an action to a file. For example,
Sugar uses a generic sub-panel file for handling subpanel actions. You can see
above that there is an entry mapping the action 'subpanelviewer' to
.Jinclude/SubPanel/SubPanelViewer.php.

The base SugarController class loads the action mappings in the following path
sequence:

./include/MVC/Controller
./modules/<module>
.Jcustom/modules/<module>
.Jcustom/include/MVC/Controller

Each one loads and overrides the previous definition if in conflict. You can drop a
new action file map in the later path sequence that extends or overrides the
mappings defined in the previous one.

Upgrade-Safe Implementation
If you want to add custom action file map.php to an existing module that came
with the SugarCRM release, you should place the file at
.Jcustom/modules/<module>/action file map.php
File Structure

e ./include/MVC/Controller/action file map.php

e ./modules/<module>/action file map.php

e ./custom/modules/<module>/action file map.php

Implementation

$action_file_map[' soapRetrieve'] = 'custonl SoapRetrieve/ soap. php';

Classic Support (Not Recommended)

127 /2.508

Classic support allows you to have files that represent actions within your module.
Essentially, you can drop in a PHP file into your module and have that be handled
as an action. This is not recommended, but is considered acceptable for backward
compatibility. The better practice is to take advantage of the action <action>
structure.

File Structure

e ./modules/<module>/<action>.php

Controller Flow Overview

For example, if a request comes in for DetailView the controller will handle the
request as follows:

1. Start in index.php and load the SugarApplication instance.

2. SugarApplication instantiates the SugarControllerFactory.

3. SugarControllerFactory loads the appropriate Controller.

4. SugarControllerFactory checks for

.Jcustom/modules/<module>/Controller.php.

1. If not found, check for ./modules/<module>/Controller.php.
2. If not found, load SugarController.php.

5. Calls on the appropriate action.

1. Look for ./custom/modules/<module>/<action>.php. If found and
.Jcustom/modules/<module>/views/view.<action>.php is not found,
use this view.

2. If not found check for modules/<module>/<action>.php. If found
and ./modules/<module>/views/view.<action>.php is not found,
then use the ./modules/<module>/<action>.php action.

3. If not found, check for the method action <action> in the

controller.
. If not found, check for an action file mapping.
. If not found, report error "Action is not defined".

SIS

Metadata

Overview
An overview of the legacy MVC metadata framework.
You should note that the MVC architecture is being deprecated and is being

replaced with sidecar. Until the framework is fully deprecated, modules set in
backward compatibility mode will still use the legacy MVC framework.

128/2.508

Metadata Framework
Background

Metadata is defined as information about data. In Sugar, metadata refers to the
framework of using files to abstract the presentation and business logic found in
the system. The metadata framework is described in definition files that are
processed using PHP. The processing usually includes the use of Smarty templates
for rendering the presentation and JavaScript libraries to handle some business
logic that affects conditional displays, input validation, and so on.

Application Metadata

All application modules are defined in the modules.php file. It contains several
variables that define which modules are active and usable in the application.

The file is located under the '<sugar root>/include' folder. It contains the
$moduleList() array variable which contains the reference to the array key to look
up the string to be used to display the module in the tabs at the top of the
application. The coding standard is for the value to be in the plural of the module
name; for example, Contacts, Accounts, Widgets, and so on.

The $beanList() array stores a list of all active beans (modules) in the application.
The $beanList entries are stored in a 'name' => 'value' fashion with the 'name'
value being in the plural and the 'value' being in the singular of the module name.
The 'value' of a $beanlList() entry is used to lookup values in our next modules.php
variable, the $beanFiles() array.

The $beanFiles variable is also stored in a 'name' => 'value' fashion. The 'name’,
typically in singular, is a reference to the class name of the object, which is looked
up from the $beanlList 'value’, and the 'value' is a reference to the class file.

The remaining relevant variables in the modules.php file are the $modInvisList
variable which makes modules invisible in the regular user interface (i.e., no tab
appears for these modules), and the $adminOnlyList which is an extra level of
security for modules that are accessible only by administrators through the Admin

page.
Module Metadata

The following table lists the metadata definition files found in the
modules/[module]/metadata directory, and a brief description of their purpose
within the system.

File Description

129/2.508

additionalDetails.php Used to render the popup information
displayed when a user hovers the mouse
cursor over a row in the List View.

editviewdefs.php Used to render a record's EditView.

detailviewdefs.php Used to render a record's DetailView.

listviewdefs.php Used to render the List View display for
a module.

metafiles.php Used to override the location of the

metadata definition file to be used. The
EditView, DetailView, List View, and
Popup code check for the presence of
these files.

popupdefs.php Used to render and handle the search
form and list view in popups.

searchdefs.php Used to render a module's basic and
advanced search form displays.

sidecreateviewdefs.php Used to render a module's quick create
form shown in the side shortcut panel.

subpaneldefs.php Used to render a module's subpanels
shown when viewing a record's
DetailView.

SearchForm Metadata

The search form layout for each module is defined in the module's metadata file
searchdefs.php. A sample of the Accounts searchdefs.php appears as:

<?php

$searchdefs[' Accounts'] = array(
"tenpl ateMeta' => array(
"maxCol utms' => ' 3",
"widths' => array(
‘label' =>"'10",
‘field =>"'30
)
)

ayout' => array(
"basi c_search' => array(
"'nane'
"billing _address_city',
' phone_office',
array(

130/2.508

'l abel' => "'LBL_CURRENT_USER FILTER ,

"address_street',

" LBL_BI LLI NG_ADDRESS' ,
"nanme' ,

"billing _address_street’

‘current _user_only',

=> array(

"address_street',
" LBL_ANY_ADDRESS' ,
"nane'

phone' ,
' LBL_ANY_PHONE' ,
name

address_city',
"LBL_CITY',

nane

"email ',
" LBL_ANY_EMAI L',
"nanme'

e',

'address_state',
" LBL_STATE',
"nane'

' addr ess_post al code'
" LBL_POSTAL_CCDE'
"nane'

"nane' =>
"l abel ' =>
‘type’ =>
‘group’ =>
)
array(
"nane' =>
"type' =>' bool"
)
)
"advanced_sear ch’
'nane',
array(
"nane' =>
"| abel ' =>
‘type’ =>
)
array(
"nane' =>
"l abel ' =>
‘type' =>
)
"website',
array(
"nane' =>
"l abel ' =>
‘type' =>
)
array(
"nane' =>
"| abel ' =>
‘type' =>
)
"annual _revenu
array(
"nane' =>
"| abel ' =>
‘type' =>
)
"enpl oyees',
array(
"nane' =>
"| abel ' =>
‘type' =>
)

131/2.508

array(
"nane' => 'billing_address_country',
"l abel' =>'"LBL_COUNTRY",
"type' => 'nane'

)

i cker _synbol ',
'sic_code',
"rating',
"ownership',
array(
"nanme' => 'assigned user _id',
"type' => 'enunm,
‘label' => 'LBL_ASSI GNED TO ,
"function' => array(
'name' =>'get_user_array',
"parans’ => array(fal se)
)
),
‘account _type',
“industry',

?>

The searchdefs.php file contains the Array variable $searchDefs with one entry.
The key is the name of the module as defined in $moduleList array defined in
include/modules.php. The $searchDefsarray is another array that describes the
search form layout and fields.

The 'templateMeta' key points to another array that controls the maximum number
of columns in each row of the search form (‘maxColumns'), as well as layout
spacing attributes as defined by 'widths'. In the above example, the generated
search form files will allocate 10% of the width spacing to the labels and 30% for
each field respectively.

The 'layout' key points to another nested array which defines the fields to display
in the basic and advanced search form tabs. Each individual field definition maps
to a SugarField widget. See the SugarField widget section for an explanation about
SugarField widgets and how they are rendered for the search form, DetailView,
and EditView.

The searchdefs.php file is invoked from the MVC framework whenever a module's

132/2.508

list view is rendered (see include/MVC/View/views/view.list.php). Within
view.list.php, checks are made to see if the module has defined a SearchForm.html
file. If this file exists, the MVC will run in classic mode and use the aforementioned
include/SearchForm/SearchForm.php file to process the search form. Otherwise,
the new search form processing is invoked using
include/SearchForm/SearchForm2.php and the searchdefs.php file is scanned for,
first under the custom/modules/[module]/metadata directory and then in
modules/[module]/metadata.

The processing flow for the search form using the metadata subpaneldefs.php file
is similar to that of EdiView and DetailView.

DetailView and EditView Metadata

Metadata files are PHP files that declare nested Array values that contain
information about the view, such as buttons, hidden values, field layouts, and
more. Following is a visual diagram representing how the Array values declared in
the Metadata file are nested:

-
' tempdatehdeta

Form buttons, hidden
inputs and encoding

Layaout irfaormation |

\

| panals ™

Fieldl, Fiald2, etc ‘

h
’ Fialdl, Field2, etc.

WA

The following diagram highlights the process of how the application determines
which Metadata file is to be used when rendering a request for a view:

133/2.508

MYV C/iMetaData Mode Classic Mode

module's Detal/EditView php exists?

_\\
(SugarContraller->pracess } f"‘g/f\ = ;{H_endar Clasic View wit mcuis PHP 1l
nrj!/_/_,ff

Load MYC View

Gisplay wiew using XTem plat;;'[

——___[display]

[preDisplay] invoke process and display on EditView object

)
)

o
{:Td metadata ﬁEr%-Q:_reate EditView object and template (if needed)

custom metladala file exist?

yes
load custom meatadata
i _—j

metafiles. php file exists?

custom metafiles.php exists?

yas yes ;o
use custon metafiles. php

module metafileg. php exists?

[nl=]

W =

J)l\‘_fu_s.e module metadata use madule metafilas.php)

The "Classic Mode" on the right hand side of the diagram represents the
SugarCRM pre-5.x rendering of a Detail/Editview. This section will focus on the
MVC/Metadata mode.

When the view is first requested, the preDisplay method will attempt to find the
correct Metadata file to use. Typically, the Metadata file will exist in the [root
level]/modules/[module]/metadata directory, but in the event of edits to a layout
through the Studio interface, a new Metadata file will be created and placed in the
[root level]/custom/modules/[module]/metadata directory. This is done so that
changes to layouts may be restored to their original state through Studio, and also
to allow changes made to layouts to be upgrade-safe when new patches and
upgrades are applied to the application. The metafiles.php file that may be loaded
allows for the loading of Metadata files with alternate naming conventions or
locations. An example of the metafiles.php contents can be found for the Accounts
module (though it is not used by default in the application).

$netafiles[' Accounts'] = array(
"detail viewdefs' => 'nodul es/ Account s/ met adat a/ det ai | vi ewdef s. php'

"edi tviewdefs' => 'nodul es/ Account s/ net adat a/ edi t vi ewdef s. php',
"Li stViewdefs' => 'nodul es/ Account s/ net adat a/ Li st Vi ewmdef s. php',
'searchdefs' => 'nodul es/ Account s/ net adat a/ sear chdef s. php',

134 /2.508

" popupdefs' => 'nodul es/ Account s/ net adat a/ popupdef s. php',
"searchfields' => 'nodul es/ Account s/ net adat a/ Sear chFi el ds. php',

After the Metadata file is loaded, the preDisplay method also creates an EditView
object and checks if a Smarty template file needs to be built for the given
Metadata file. The EditView object does the bulk of the processing for a given
Metadata file (creating the template, setting values, setting field level ACL controls
if applicable, etc.). Please see the EditView process diagram for more detailed
information about these steps.

After the preDisplay method is called in the view code, the display method is
called, resulting in a call to the EditView object's process method, as well as the
EditView object's display method.

The EditView class is responsible for the bulk of the Metadata file processing and
creation of the resulting display. The EditView class also checks to see if the
resulting Smarty template is already created. It also applies the field level ACL
controls for Sugar Sell, Serve, Ultimate, Enterprise, Corporate, and Professional.

The classes responsible for displaying the Detail View and SearchForm also extend
and use the EditView class. The ViewEdit, ViewDetail and ViewSidequickcreate
classes use the EditView class to process and display their contents. Even the file
that renders the quick create form display (SubpanelQuickCreate.php) uses the
EditView class. DetailView (in DetailView2.php) and SearchForm (in
SearchForm2.php) extend the EditView class while SubpanelQuickCreate.php uses
an instance of the EditView class. The following diagram highlights these
relationships.

135/2.508

ViewEdit (view.adit.php)

-av : object

-type : string = edit

-useForSubpansl ; bool = falze
-uselModuleQuickCreate Template : bool = false
-showTitle : bool = true

+preDisplay(): bool
+dislpayl) : siring

ViewSidequickcreate (view.sideqguickcreate.
php)

+preDisplay(): bool
+dislpayl) : siring

ViewDetail (view.detail.php)

-type : string = detail
-dv ; object

+prelisplay(): bool
+dislpayl) : siring

L S8s %

wL G

EditView (EditView2.php)

-th : object

Hipl : sfring

-notas : string

-id : string
-metadataFile : string
-headerTpl : string
-footerTpl : string
-refumAction : string
-refimid : string
-isDuplicate : bool
-focus @ object
-module : string

Hfiald Defs : objact
-sactionPanels : object
-wiews @ string
-showDetailData : bool
~show/CRContral : boao
-=5 : object

-offsat @ int
-popllateBean : bool
-module Titlekey : string

HUSSER

+eetup()
+oreateFocus()
+populateBeani)
+required First()
+render)

+procass()

+display() : string
+callFunction() : string

+gatValueFromRaquest() : object

+showTitle() : string
+5i itletieyl)

SubpanelQuickCreats. php

+procass()string

—

DetailView (DetailView2.php)

SearchForm (SearchForm2.php)

Feiaw ; string = DetailView

+setupl)

ausesn

JAY

Feeed ; object

Faction : string = index
eearchdefs : objact

HistWiewDefs : object

Hu : object

FdisplayWiew : string = basic_search
HrormD ata : object
FoustomField Defs @ object

Habs : ochject

Fparsad\iew : string

eearchFizlds : object
FdisplaySavedSearch : bod = trus
Feiew : string = SearchForm
FehowAdvanced : bool = frue
FehowBasic : bool = frue
FehowCustom : bool = false
FnbTabs :int=0
FehowSavedSearchesOptions : bool = true

+eetupl()

+dizplayl) : string
+displaySavedSaarch(): string
+dizplaySavedSearchSelect() : string
+_displayTabs() : string
+_build_field_defs ()
+populateFrom&rrayl)
+genarateSearchWherel) : object
+_createluickSearchCoda() : string

The following diagram highlights the EditView class's main responsibilities and
their relationships with other classes in the system. We will use the example of a
DetailView request although the sequence will be similar for other views that use

the EditView class.

136/2.508

SugarConireller Sugariiew View Deatail Edifiiew Templat=Handler
process . : i :
e preDisplay i i :
B —— e Edifview() : !
L 1
: Edifview insiance r:
oo |
| selup |
|]
T o ~
| 1T ——
el | | " createFocus
ISPy | roCEss l' "
) _" F a cheskTermplate

*
i no templabe exists? |
i«
b
| ::} render
= yes
P

display

7 build femplate {f nal exists)

relurm view contents

fi e e e i e

One thing to note is the EditView class's interaction with the TemplateHandler
class. The TemplateHandler class is responsible for generating a Smarty template
in the cache/modules/<module> directory. For example, for the Accounts module,
the TemplateHandler will create the Smarty file,
cache/modules/Accounts/DetailView.tpl, based on the Metadata file definition and
other supplementary information from the EditView class. The TemplateHandler
class actually uses Smarty itself to generate the resulting template that is placed in
the aforementioned cache directory.

Some of the modules that are available in the SugarCRM application also extend
the ViewDetail class. One example of this is the DetailView for the Projects
module. As mentioned in the MVC section, it is possible to extend the view classes
by placing a file in the modules/<module>/views directory. In this case, a
view.detail.php file exists in the modules/Projects/views folder. This may serve as a
useful example in studying how to extend a view and apply additional field/layout
settings not provided by the EditView class.

The following diagram shows the files involved with the DetailView example in
more detail:

137/2.508

v

‘ MV Framework | Module Defined = | 42) Detail View. php A7) 4 % Framework

5% Framework

h 4

A) Detall View php

EditView php 1 F) Generic DetailView tpl J) BugarFields Library +

\ SugarFieldHandler

() vardefs php

I} Smarty Plugins/Modifiers

C) Metadata files
* editviewdefephp [T D) Template Handler — E) Sugar Smarty
* detailviewdefs php
* listviewdefs php |

* searchdefs php H) Template Repository
cache/modules/<module name>=/* tpl

A high level processing summary of the components for DetailViews follows:

The MVC framework receives a request to process the DetaiView.php (A) action for
a module. For example, a record is selected from the list view shown on the
browser with URL:

index.php?action=DetailView&module=Opportunities&record=46af984 3-ccdf-
f489-8833

At this point the new MVC framework checks to see if there is a DetailView.php
(A2) file in the modules/Opportunity directory that will override the default
DetailView.php implementation. The presence of a DetailView.php file will trigger
the "classic" MVC view. If there is no DetailView.php (A2) file in the directory, the
MVC will also check if you have defined a custom view to handle the DetailView
rendering in MVC (that is, checks if there is a file
modules/Opportunity/views/view.detail.php). See the documentation for the MVC
architecture for more information. Finally, if neither the DetailView.php (A2) nor
the view.detail.php exists, then the MVC will invoke
include/DetailView/DetailView.php (A).

The MVC framework (see views.detail.php in include/MVC/View/views folder)
creates an instance of the generic DetailView (A)

/] Call Detail Vi ew2 constructor
$dv = new Detail Vi ew2();

138/2.508

/1 Assign by reference the Sugar Smarty object created from WC
/1 We have to explicitly assign by reference to back support PHP 4. Xx
$dv->ss =& $t hi s- >s5;

[l Call the setup function
$dv- >set up($t hi s->nodul e, $t hi s->bean, $nmetadataFile, 'include/DetailV
iew Detail View. tpl');

/'l Process this view
$dv- >process();

/! Return contents to the buffer
echo $dv->display();

When the setup method is invoked, a TemplateHandler instance (D) is created. A
check is performed to determine which detailviewdefs.php metadata file to used in
creating the resulting DetailView. The first check is performed to see if a metadata
file was passed in as a parameter. The second check is performed against the
custom/studio/modules/[Module] directory to see if a metadata file exists. For the
final option, the DetailView constructor will use the module's default
detailviewdefs.php metadata file located under the modules/[Module]/metadata
directory. If there is no detailviewdefs.php file in the modules/[Module]/metadata
directory, but a DetailView.html exists, then a "best guess" version is created using
the metadata parser file in include/SugarFields/Parsers/DetailViewMetaParser.php
(not shown in diagram).

The TemplateHandler also handles creating the quick search (Ajax code to do look
ahead typing) as well as generating the JavaScript validation rules for the module.
Both the quick search and JavaScript code should remain static based on the
definitions of the current definition of the metadata file. When fields are added or
removed from the file through Studio, this template and the resulting updated
quick search and JavaScript code will be rebuilt.

It should be noted that the generic DetailView (A) defaults to using the generic
DetailView.tpl smarty template file (F). This may also be overridden through the
constructor parameters. The generic DetailView (A) constructor also retrieves the
record according to the record id and populates the $focus bean variable.

The process() method is invoked on the generic DetailView.php instance:

function process()

{

[/ Format fields first
i f($this->formatFields)

139/2.508

{
}

$thi s->focus->format _all _fields();

parent:: process();

This, in turn, calls the EditView->process() method since DetailView extends from
EditView. The EditView->process() method will eventually call the
EditView->render() method to calculate the width spacing for the DetailView
labels and values. The number of columns and the percentage of width to allocate
to each column may be defined in the metadata file. The actual values are rounded
as a total percentage of 100%. For example, given the templateMeta section's
maxColumns and widths values:

"tenpl ateMeta’ => array(
"maxCol uims' => '2',
"widths' => array(

array(
‘label' =>"'10",
‘field =>"'30
),
array(
‘label' =>"'10",
‘field =>"'30

We can see that the labels and fields are mapped as a 1-to-3 ratio. The sum of the
widths only equals a total of 80 (10 + 30 x 2) so the actual resulting values written
to the Smarty template will be at a percentage ratio of 12.5-to-37.5. The resulting
fields defined in the metadata file will be rendered as a table with the column
widths as defined:

140/ 2.508

10085

S

Labal 1

Lat=l 2

12 8% 57 .5%

Walue 1

Walue 3

Label 2 Walle 2

Label 4 Walled

The actual metadata layout will allow for variable column lengths throughout the

displayed table. For example, the metadata portion defined as:

' panel s’
"default' => array(
array(

),

=> array(

"nanme' ,

array(
"nane'
"| abel’

).

array(

).

‘account _nane',

array(

"opportunity_type',

=> '"anount',
=> ' {$MOD. LBL_AMOUNT} ({$CURRENCY})",

This specifies a default panel under the panels section with three rows. The first

row has two fields (name and amount). The amount field has some special
formatting using the label override option. The second row contains the

account name field and the third row contains the opportunity type column.

141/2.508

100%
A%

12.5% 37 5%

Mzarmes Foo Amaunt 100,000
Account | Test Accaount

Type Haw Business

Next, the process() method populates the $fieldDefs array variable with the
vardefs.php file (G) definition and the $focus bean's value. This is done by calling
the toArray () method on the $focus bean instance and combining these values
with the field definition specified in the vardefs.php file (G).

The display() method is then invoked on the generic DetailView instance for the
final step.

When the display() method is invoked, variables to the DetailView.tpl Smarty
template are assigned and the module's HTML code is sent to the output buffer.

Before HTML code is sent back, the TemplateHandler (D) first performs a check to
see if an existing DetailView template already exists in the cache respository (H).
In this case, it will look for file cache/modules/Opportunity/DetailView.tpl. The
operation of creating the Smarty template is expensive so this operation ensures
that the work will not have to be redone. As a side note, edits made to the
DetailView or EditView through the Studio application will clear the cache file and
force the template to be rewritten so that the new changes are reflected.

If the cache file does not exist, the TemplateHandler (D) will create the template
file and store it in the cache directory. When the fetch() method is invoked on the
Sugar Smarty class (E) to create the template, the DetailView.tpl file is parsed.

Examples

Legacy MVC metadata examples.

Hiding the Quotes Module PDF Buttons

Overview

How to hide the PDF buttons on a Quote.

142 /2.508

The PDF buttons on quotes are rendered differently than the standard buttons on
most layouts. Since these buttons can't be removed directly from the DetailView in
the detailviewdefs, the best approach is using jQuery to hide the buttons.

Note: This customization is only applicable for the quotes module as it is in
backward compatibility mode.

Hidding the PDF Buttons

This approach involves modifying the detailviewdefs.php in the
custom/modules/Quotes/metadata directory to include a custom JavaScript file. If a
custom detailviewdefs.php file doesn't exist, you will need to create it through
Studio or by manually coping the detailviewdefs.php from the Quotes stock module
metadata directory.

First, we will create a javascript file, say removePdfBtns.js, in the
.Jcustom/modules/Quotes directory. This javascript file will contain the jQuery
statements to hide the Quotes "Download PDF" and "Email PDF" buttons on the
DetailView of the Quote.

.Jcustom/modules/Quotes/removePdfBtns.js

SUGAR. uti | .dowen("typeof $!'= "undefined ", function(){
YAHQO. ut i | . Event . onDOVReady(function() {
$(" #pdf vi ew_button"). hide();
$("#pdf emmi | _button"). hide();
1)
1)

Next, we will modify the custom detailviewdefs.php file to contain the 'includes'
array element in the templateMeta array as follows:

.Jcustom/modules/Quotes/metadata/detailviewdefs.php

$vi ewdef s[' Quotes'] = array (
"Detail View =>
array (
"tenpl ateMeta’ =>
array (
"form =>
array (
' cl oseFor nBef or eCust onButt ons' => true,
"buttons' =>

143/2.508

array (
0=>"'EDT,
1 => ' SHARE',
2 => ' DUPLI CATE ,
3 => 'DELETE',
4 =>
array (
' cust onmCode' => '<form action="index. php" nethod="POST" na
me="Quot e2Qp" id="forn>
<i nput type="hi dden" nanme="nodul e" val ue="Quot es">
<i nput type="hidden" nane="record" val ue="{$fields
.id.value}">
<i nput type="hi dden" nanme="user _id" value="{$curre
nt _user->id}">
<i nput type="hidden" nane="team.id" value="{$field
s.team. d. val ue}">
<i nput type="hi dden" nane="user nane" val ue="{$cur
rent _user->user_nhane}">
<i nput type="hi dden" nane="action" val ue="QuoteToO
pportunity">
<i nput type="hidden" nanme="opportunity subject" va
| ue="{$fiel ds. nane. val ue}" >
<i nput type="hi dden" nanme="opportunity nanme" val ue
="{$fiel ds. nane. val ue}" >
<i nput type="hi dden" nanme="opportunity id" val ue="
{$fields.billing_account _id.value}">
<i nput type="hidden" nane="anount" val ue="{$fi el ds
.total.val ue}">
<i nput type="hi dden" name="valid_ until" val ue="{$f
i el ds. date_quot e_expect ed_cl osed. val ue} ">
<i nput type="hidden" nane="currency_id" val ue="{%f
i elds.currency_id.val ue}">
<input id="create_opp_fromquote_ button" title="{$
APP. LBL_QUOTE_TO OPPORTUNI TY_TI TLE}"
class="button" type="submt" nane="opp_to_quot
e_button”
val ue="{$APP. LBL_QUOTE_TO OPPORTUNI TY_LABEL}"
{ $Dl SABLE_CONVERT} ></ f or np' ,
)

)
"footerTpl' => 'nodul es/ Quotes/tpls/Detail Vi ewFooter.tpl',
)

"maxCol ums' => '2',
"widths' =>
array (

0 =>

144 12.508

array (
"l abel' => '10",
"field =>"'30",

)
1 =
array (
"l abel' => '10",
"field =>"'30",
)
)
"includes' =>
array (
0 =>
array (
"file" => 'custonl nodul es/ Quotes/renovePdfBtns.js',
)
)
"useTabs' => fal se,
"tabDefs' =>
array (
' LBL_QUOTE_| NFORVATI ON' =>
array (
"newTab' => fal se,
' panel Default' => 'expanded',
)
" LBL_PANEL_ASSI GNMENT' =>
array (
"newTab' => fal se,
' panel Default' => 'expanded',
)
)

Finally, navigate to:

Adm n > Repair > Quick Repair and Rebuild

The buttons will then be removed from the DetailView layouts.

145/2.508

Manipulating Buttons on Legacy MVC Layouts

Overview
How to add custom buttons to the EditView and DetailView layouts.

Note: This customization is only applicable for modules in backward compatibility
mode.

Metadata

Before adding buttons to your layouts, you will need to understand how the
metadata framework is used. Detailed information on the metadata framework can
be found in the Legacy Metadata section.

Custom Layouts

Before you can add a button to your layout, you will first need to make sure you
have a custom layout present. The stock layouts are located in
./modules/<module>/metadata/ and must be recreated in
.Jcustom/modules/<module>/metadata/.

There are two ways to recreate a layout in the custom directory if it does not
already exist. The first is to navigate to:

Studi o > {Modul e} > Layouts > {View

Once there, you can click the "Save & Deploy" button. This will create the
layoutdef for you. Alternatively, you can also manually copy the layoutdef from the
stock folder to the custom folder.

Editing Layouts

When editing layouts you have three options in having your changes reflected in
the UI.

Developer Mode

You can turn on Developer Mode:

Adm n > System Settings

146 /2.508

Developer Mode will remove the caching of the metadata framework. This will
cause your changes to be reflected when the page is refreshed. Make sure this
setting is deactivated when you are finished with your customization.

Quick Repair and Rebuild

You can run a Quick Repair and Rebuild:

Adm n > Repair > Quick Repair and Rebuild

Doing this will rebuild the cache for the metadata.
Saving & Deploying the Layout in Studio
You may also choose to load the layout in studio and then save & deploy it:

Adm n > Studio > {Mddul e} > Layouts > {View}

This process can be a bit confusing, however, once a layout is changed, you can
then choose to load the layout in studio and then click "Save & Deploy" . This will
rebuild the cache for that specific layout. Please note that any time you change the
layout, you will have to reload the Studio layout view before deploying in order for
this to work correctly.

Adding Custom Buttons
When adding buttons, there are several things to consider when determining how
the button should be rendered. The following sections will outline these scenarios

when working with the accounts editviewdefs located in
.Jcustom/modules/Accounts/metadata/editviewdefs.php.

JavaScript Actions

If you are adding a button solely to execute JavaScript (no form submissions), you
can do so by adding the button HTML to:

$vi ewdef s[' <Mbdul e>']['<View>']['tenplateMeta' J['form][buttons']

Example

147 /2.508

<?php
$vi ewdef s[' Accounts'] =
array (
"Detail View =>
array (
"tenpl ateMeta' =>
array (
“form =>
array (
"buttons' =>
array (
0O =>"'EDT,
1 => ' DUPLI CATE',
2 => ' DELETE',
3 => ' FI ND_DUPLI CATES',
4 => ' CONNECTOR ,
5 =>
array (
‘custonCode' => '<input id="JavaScriptButton" title="JavaS

cript Button" class="button" type="button" nane="JavaScri ptButton" val
ue="JavaScript Button" onclick="alert(\'Button JavaScript\')">",

148/2.508

Submitting the Stock View Form
If you intend to submit the stock layout form (‘formDetailView' or 'formEditView')
to a new action, you can do so by adding a the button HTML with an onclick event

as shown below to:

$vi ewdef s[' <Mbdul e>']['<View>']['tenplateMeta' J['form][' buttons']

Example
<?php
$vi ewdef s[' Accounts'] =
array (
‘Detail View =>
array (
"tenpl ateMeta’ =>
array (
‘form =>
array (
' hi dden' =>
array (

0 => '<input type="hidden" id="custonfornfield" nane="custom
FornFi el d" val ue="">",

)
"buttons' =>
array (

0="'EDT,

149 /2.508

1 => ' DUPLI CATE ,

2 => ' DELETE',

3 => 'FI ND_DUPLI CATES',
4 => "' CONNECTOR ,

5 =>

array (

' custonCode' => '<input id="SubmtStockFornButton” title="
Submt Stock Form Button" class="button" type="button" name="SubmtSto
ckFornmButton" val ue="Submt Stock Form Button" onclick="var _form = do
cunent. getEl enentByld(\' fornDetail View'); _form custonfornFi el d. val ue
= \'CustonValue\'; formaction.value = \'CustomAction\'; SUGAR aj axU
| .submtForm(_form;">",

You should note in this example that there is also a 'hidden' index. This is where
you should add any custom hidden inputs:

$vi ewdef s[' <Modul e>'][
"<Views'][

"tenpl ateMeta'] [
"form][

" hi dden']

Submitting Custom Forms

If you intend to submit a custom form, you will first need to set
‘closeFormBeforeCustomButtons' to true. This will close out the current views
form and allow you to create your own.

150/2.508

$vi ewdef s[' <Modul e>'J['<View>']['tenplateMeta']['form][’ cl oseFor nBef o
reCust onBut t ons']

Next, you will add the form and button HTML as shown below to:

$vi ewdef s[' <Mbdul e>']['<View>']['tenplateMeta' J['form][' buttons']

Example
<?php
$vi ewdef s[' Accounts'] =
array (
‘Detail View =>
array (
"tenpl ateMeta’ =>
array (
‘form =>
array (
' cl oseFor nBef or eCust onButt ons' => true,
"buttons' =>
array (
0O =>"'EDT,
1 => ' DUPLI CATE',
2 => ' DELETE',
3 => ' FI ND_DUPLI CATES',

4 => " CONNECTOR

151/2.508

5 =>
array (
' cust onCode' => '<form action="index. php" nethod="POST" na
me="Cust onfForm' i d="fornm ><i nput type="hi dden" nanme="cust onfornFi el d"
nane="cust onfor nFi el d* val ue="Cust onVal ue" ><i nput i d="Subm t Cust onFor m

Button" title="Submt Custom Form Button" class="button" type="submt"
nanme="Subm t Cust onfFor nButt on" val ue="Submt Custom Form Button"></for

Removing Buttons

To remove a button from the detail view will require modifying the
./modules/<module>/metadata/detailviewdefs.php.

The code is originally defined as:
$vi ewdef s[$nodul e_nane] = array (
"Detail View => array (
"tenpl ateMeta' => array (
"form => array (
"buttons' => array (
"EDI T,
" DUPLI CATE'
' DELETE' ,

" FI ND_DUPL| CATES'

152 /2.508

To remove one or more buttons, simply remove the 'buttons' attribute(s) that you
do not want on the view.

$vi ewdef s[$nodul e_nane] = array (
"Detail View => array (
"tenpl ateMeta' => array (
"form => array (
"buttons' => array (

" DELETE'

Manipulating Layouts Programmatically

Overview
How to manipulate and merge layouts programmatically.

Note: This customization is only applicable for modules in backward compatibility
mode.

The ParserFactory

The ParserFactory can be used to manipulate layouts such as editviewdefs or
detailviewdefs. This is a handy when creating custom plugins and needing to
merge changes into an existing layout. The following example will demonstrate

153/2.508

how to add a button to the detail view:
<?php

/[llnstantiate the parser factory for the Accounts Detail Vi ew.
requi re_once(' nodul es/ Modul eBui | der/ par ser s/ Par ser Factory. php');
$parser = ParserFactory::getParser('detailview, 'Accounts');

[/ Button to add
$button = array(

' cust onCode' =>' <i nput type="button" nanme="custonButton" val ue="Cus
tom Button">'

)

[/ Add button into the parsed | ayout
array_push($parser->_ viewdefs['tenplateMeta']['form][' buttons'], $but
ton);

[/ Save the | ayout
$par ser - >handl eSave(f al se);

Modifying Layouts to Display Additional Columns

Overview

How to add additional columns to layouts.

By default, the editview, detailview, and quickcreate layouts for each module
display two columns of fields. The number of columns to display can be customized

on a per-module basis with the following steps.

Note: This customization is only applicable for modules in backward compatibility
mode.

Resolution
SugarCloud

First, you will want to ensure your layouts are deployed in the custom directory. If
you have not previously customized your layouts via Studio, go to Admin > Studio

154 /2.508

> {Module Name} > Layouts. From there, select each layout you wish to add
additional columns to and click 'Save & Deploy'. This action will create a
corresponding layout file under the ./custom/modules/{Module Name }/metadata/
directory. The files will be named editviewdefs.php, detailviewdefs.php, and
quickcreatedefs.php depending on the layouts deployed.

To access your custom files, go to Admin > Diagnostic Tool, uncheck all the boxes
except for "SugarCRM Custom directory" and then click "Execute Diagnostic". This
will generate an archive of your instance's custom directory to download, and you
will find the layout files in the above path. Open the custom layout file, locate the
'maxColumns' value, and change it to the number of columns you would like to
have on screen:

"maxCol ums' => '3',

Once that is updated, locate the '‘widths' array to define the spacing for your new
column(s). You should have a label and field entry for each column in your layout:

'"wdths' => array (
0 => array (
"label' => '10",
‘field =>"'30",

1 => array (
"label' => '10",
‘field =>"'30",

2 => array (
"label' => '10",
‘field =>"'30",

After this is completed, you will need to create a module-loadable package to
install the changes on your SugarCloud instance. More information on creating
this package can be found in Creating an Installable Package that Creates New
Fields. To upload and install the package, go to Admin > Module Loader.

Note: Sugar Sell Essentials customers do not have the ability to upload custom file
packages to Sugar using Module Loader.

Once the installation completes, you can navigate to Studio and add fields to your

155/2.508

new column in the layout. For any rows that already contain two fields, the second
field will automatically span the second and third column. Simply click the minus
(-) icon to contract the field to one column and expose the new column space:

€ | Studio > Contacts > Layouts > DetailView

Save Save & Deploy View History Restore Default Copy from EditView
; 2
. Overview < Display Type | : Panel # Collapse? _|
A _
"."f" |Name 7 | |P|t:1ure
|A55istam 7 |
Mew Pancl
|Title 1 |
N R
o Rew =|@ffice Phone |
(filler) | o :
epartment 7 | | + Maobile 7 |
‘Allernate Address City |
\(filler) |
|Alternate Address p |

After you have added the desired fields in Studio, click 'Save & Deploy', and you
are ready to go!

On-Site

First, you will want to ensure your layouts are deployed in the custom directory. If
you have not previously customized your layouts via Studio, go to Admin > Studio
> {Module Name} > Layouts. From there, select each layout you wish to add
additional columns to and click 'Save & Deploy'. This action will create a
corresponding layout file under the ./custom/modules/{Module Name}/metadata/
directory. The files will be named editviewdefs.php, detailviewdefs.php, and
quickcreatedefs.php depending on the layouts deployed.

Next, open the custom layout file, locate the 'maxColumns' value, and change it to
the number of columns you would like to have on screen:

"maxCol ums' => "'3',

Once that is updated, locate the 'widths' array to define the spacing for your new
column(s). You should have a label and field entry for each column in your layout:

"widths' => array (
0 => array (

156 /2.508

"label' => '10",
‘field =>"'30",
)
1 => array (
"label' => '10",
‘field =>"'30",
)
2 => array (
"l abel' => '10",
‘field =>"'30",
)

Once this is completed, you can navigate to Studio and add fields to your new
column in the layout. For any rows that already contain two fields, the second field
will automatically span the second and third column. Simply click the minus (-)
icon to contract the field to one column and expose the new column space:

€ | Studio > Contacts > Layouts > DetailView

Save Save & Deploy View History Restore Default Copy from EditView
- il
- Overview < Display Type | : Panel # selbla ot 2
I".T-i."l |Name 2 | |Pit:1ure
|A55istam I |
Mew Pancl
|Tme r |
N R
o Rew =|@ffice Phone » |
(filler) | :
|Departmem o || + Maobile & |
‘Allernate Address City |
\(filler) |
|Alternate Address & |

After you have added the desired fields in Studio, click 'Save & Deploy', and you
are ready to go!

Examples

Provides an overview of example MVC customizations.

157 /2.508

Changing the ListView Default Sort Order

Overview

This article addresses the need to customize the advanced search layout options
for modules in backward compatibility mode to change the default sort order from
ascending to descending.

Customization Information

This customization is only for modules in backward compatibility mode and
involves creating custom files that extend stock files. You should note that this
customization does not address all scenarios within the view that may assign a sort
order.

Extending the Search Form

First, we will need to extend the SearchForm class. To do this, we will create a
CustomSearchForm class that extends the original SearchForm class located in
.Jinclude/SearchForm/SearchForm?2.php. We will then override the displayTabs
method to check the $ REQUEST]['sortOrder'] and default it to descending if it isn't
set.

.Jcustom/include/SearchForm/SearchForm2.php
<?php
requi re_once 'include/ Sear chFor nf Sear chFor n2. php' ;

cl ass Cust onBear chFor m ext ends Sear chFor m

{

/**

* displays the tabs (top of the search form
* @aramstring $currentKey key in $this->tabs to show as the cur
rent tab
* @eturn string htm
*/
function _displayTabs($current Key)
{
/I check and set the default sort order
if (lisset($_REQUEST['sortOrder']))
{

158 /2.508

$ REQUEST['sortOrder'] = 'DESC ;
}

return parent:: displayTabs($currentKey);;

?>

Extending the List View

Next, we will need to extend the ListView. We will create a ViewCustomlList class
that extends the original ListView located in
Jinclude/MVC/View/views/view.list.php. In the ViewCustomList class, we will
override the prepareSearchForm and getSearchForm2 methods to call the
CustomSearchForm class.
.Jcustom/include/MVC/View/views/view.customlist.php

<?php

requi re_once 'include/ WC/ Vi ew vi ews/view. |list.php';

cl ass Vi ewCustonlLi st extends Vi ewli st

{
functi on prepareSear chForm))
{
$t hi s- >searchForm = nul | ;
/] search
$vi ew = 'basic_search';
if(!empty($ REQUEST['search formview]) && $ REQUEST[' search_
formview] == 'advanced_search')

$view = $ REQUEST[' search _formyview];
$t hi s- >headers = true;

if(!'empty($_REQUEST[' search formonly']) &% $ REQUEST[' search_
formonly'])
$t hi s- >headers = fal se;
el seif(!isset($ REQUEST['search _form]) || $_REQUEST|[' search_f

159 /2.508

orm] !'="false")

{ i f(isset($ REQUEST[' searchFornifab']) && $ REQUEST[' searchF
ormlab'] == 'advanced_search')
{ $vi ew = ' advanced_search';
}
el se
{
$vi ew = ' basi c_search';
}
}

$t hi s->view = $vi ew,
$t hi s->use_ol d_search = true;

i f (Sugar Aut oLoader : : exi sti ngCuston(' nodul es/' . $this->nodul e
"/ SearchForm html ') &&

I Sugar Aut oLoader : : exi sti ngCust on(' nodul es/' . $this->nodul
e . '/netadatal/searchdefs. php')) {

requi re_once('incl ude/ Sear chFor nf Sear chFor m php') ;

$t hi s- >sear chForm = new Sear chFor n($t hi s->npdul e, $this->s

eed) ;
} else {
$t hi s->use_ol d_search = fal se;
/'l Updated to require the extended CustontSearchForm cl ass
requi re_once(' custom i ncl ude/ Sear chFor nl Sear chFor n2. php');
$searchMet aDat a = SearchForm :retri eveSear chDef s($t hi s->np
dul e);

$t hi s- >sear chForm = $t hi s- >get Sear chFor n2($t hi s- >seed, $th
i s->nodul e, $this->action);

$t hi s- >sear chFor m >set up($sear chMet aDat a[' searchdefs'], $s
earchMet aDat a[' searchFields'], 'SearchFornteneric.tpl', $view, $this->
listViewDefs);

$t hi s->searchForm >l v = $t his->|v;

}
}

/**

* Returns the search form object

160/ 2.508

*

* @eturn SearchForm

*/
protected function get SearchForn2($seed, $nodul e, $action = "index
")
{
[/ Updated to use the extended CustonBearchForm cl ass
return new Cust onSear chFor n($seed, $nodul e, $action);
}
}
?>

Extending the Sugar Controller

Finally, we will create a CustomSugarController class that extends the orginal
SugarController located in ./include/MVC/Controller/SugarController.php. We will
then need to override the do action and post action methods to execute their
parent methods as well as the action listview method to assign the custom view to
the view attribute.

.Jcustom/include/MVC/Controller/SugarController.php
<?php

/**

* Cust om Sugar CRM control | er

*/

cl ass CustonBugar Control | er extends SugarController

{

/**

* Performthe specified action.
* This can be overridde in a sub-cl ass

*/
private function do_action()
{
return parent::do_action();
}
/**

* Performan action after to the specified action has occurred.

161/2.508

* This can be overridde in a sub-cl ass

*/
private function post_action()
{
return parent::post_action();
}
/**

* Performthe |listview action

*/
protected function action_listview)
{
parent::action_listview);
[/ set the new custom vi ew
$t hi s->view = 'customist';
}
}
?>

Data Framework

The Sugar application comprises core elements such as modules, fields, vardefs,
and other foundational components. The Data Framework pages document how
these core elements are modeled and implemented in Sugar.

Modules

Overview

How modules are defined and used within the system

Module Definitions

The module definitions, defined in ./include/modules.php, determine how modules
are displayed and used throughout the application. Any custom metadata, whether
from a plugin or a custom module, should be loaded through the Include
extension. Prior to 6.3.x, module definitions could be added by creating the file
Jinclude/modules override.php. This method of creating module definitions is still
compatible but is not recommended from a best practices standpoint.

162 /2.508

Hierarchy Diagram

The modules metadata are loaded in the following manner:

Jinclude/madules.php ‘
|

Loads overrides from

Jnclude/modules ﬂverride.php‘

Loads overrides from

Jeustomfapplication/Extinclude/modules.ext.php ‘

Files in thig directory are compiled into

Jeustom/Extensionfapplication/Extinclude/=name=.php ‘

$moduleList

The $moduleList is an array containing a list of modules in the system. The format
of the array is to have a numeric index and a value of the modules unique key.

$nmodul eLi st[] = 'Accounts';

$beanlist

The $beanlList variable is an array that stores a list of all active beans (modules) in
the application. The format of the array is array('<bean plural name>' => '<bean
singular name>");. The $beanList key is used to lookup values in the $beanFiles
variable.

$beanLi st[' Accounts'] = 'Account';

$beanFiles

The $beanFiles variable is an array used to reference the class files for a bean. The
format of the array is array('<bean singular name>' => '<relative class file>");.
The bean name, stored in singular form, is a reference to the class name of the
object, which is looked up from the $beanList 'key'.

163/2.508

$beanFi |l es[' Account'] = 'nodul es/ Account s/ Account . php';

$modInvisList

The $modInvisList variable removes a module from the navigation tab in the
MegaMenu, reporting, and it's subpanels under related modules.To enable a
hidden module for reporting, you can use $report include modules. To enable a
hidden modules subpanels on related modules, you can

use $modules exempt from availability check. The

$nodl nvi sList[] = 'Prospects';

$modules_exempt from_availability check

The $modules exempt from availability check variable is used in conjunction
with $modInvisList. When a module has been removed from the MegaMenu view
with $modInvisList, this will allow for the display of the modules subpanels under
related modules.

$nodul es_exenpt _from avail ability_check[' QAut hKeys'] = ' QAut hKeys';

$report_include_modules

The $report_include modules variable is used in conjunction with $modInvisList.
When a module has been hidden with $modInvisList, this will allow for the module
to be enabled for reporting.

$report _include_nodul es[' Prospects'] = 'Prospect’;

$adminOnlyList

The $adminOnlyList variable is an extra level of security for modules that are can
be accessed only by administrators through the Admin page. Specifying all will
restrict all actions to be admin only.

$adm nOnl yLi st[' Pdf Manager'] = array(
tall' => 1

)

164 /2.508

$SbwcModules

The $bwcModules variable determines which modules are in backward
compatibility mode. More information on backward compatibility can be found in
the Backward Compatibility section.

Models

Overview

Each module in Sugar is extending the Sugar Model. This model is determined by
the SugarBean, which contains methods to create, read/retrieve, update, and
delete records in the database and any subclass of the SugarBean. Many of the
common Sugar modules also use the SugarObjects class, which is explained in the
next section.

SugarObject Templates

Sugar objects extend the concept of subclassing a step further and allow you to
subclass the vardefs. This includes inheriting of fields, relationships, indexes, and
language files. However, unlike subclassing, you are not limited to a single
inheritance. For example, if there were a Sugar object for fields used in every
module (e.g. id, deleted, or date modified), you could have the module inherit from
both the Basic Sugar object and the Person Sugar object.

To further illustrate this, let's say the Basic object type has a field 'name' with
length 10 and the Company object has a field 'name' with length 20. If you inherit
from Basic first and then Company, your field will inherit the Company object's
length of 20. However, the module-level setting always overrides any values
provided by Sugar objects, so, if the field 'name' in your module has been set to
length 60, then the field's length will ultimately be 60.

There are six types of SugarObject templates:

e Basic : Contains the basic fields required by all Sugar modules
Person : Based on the Contacts, Prospects, and Leads modules
Issue : Based on the Bugs and Cases modules

Company : Based on the Accounts module

File : Based on the Documents module

Sale : Based on the Opportunities module

165/2.508

SugarObject Interfaces

In addition to the object templates above, "assignable" object templates can

be used for modules with records that should contain an Assigned To field.
Although every module does not use this, most modules allow assignment of
records to users. SugarObject interfaces allow us to add the assignable attribute to
these modules.

SugarObject interfaces and SugarObject templates are very similar to one another,
but the main distinction is that templates have a base class you can subclass while
interfaces do not. If you look into the file structure, templates include many

additional files, including a full metadata directory. This is used primarily for
Module Builder.

File Structure

e ./include/SugarObjects/interfaces
e ./include/SugarObjects/templates

Implementation
There are two things you need to do to take advantage of Sugar objects:

1. Subclass the SugarObject class you wish to extend for your class:

cl ass Myd ass extends Person

{
function Myd ass()
{
parent:: Person();
}
}

2. Add the following line to the end of the vardefs.php file:

Var def Manager : : creat eVardef (' My ass', ' My ass', array('default
', 'assignable', 'teamsecurity', 'person'));

This snippet tells the VardefManager to create a cache of the MyClass

vardefs with the addition of all the default fields, assignable fields, team
security fields, and all fields from the person class.

Performance Considerations

166/ 2.508

VardefManager caches the generated vardefs into a single file that is loaded at
runtime. If that file is not found, Sugar loads the vardefs.php file, located in your
module's directory. The same is true for language files. This caching also includes
data for custom fields and any vardef or language extensions that are dropped into
the extension framework.

Cache Files

e ./cache/modules/<module>/<object name>vardefs.php
e ./cache/modules/<module>/languages/en us.lang.php

SugarBean

Overview

The SugarBean class supports all the model operations to and from the database.
Any module that interacts with the database utilizes the SugarBean class, which
contains methods to create, read/retrieve, update, and delete records in the
database (CRUD), as well as fetch related records.

CRUD Handling

The SugarBean handles the most basic functions of the Sugar database, allowing
you to create, retrieve, update, and delete data.

Creating and Retrieving Records

The BeanFactory class is used for bean loading. The class should be used
whenever you are creating or retrieving bean objects. It will automatically handle
any classes required for the bean. More information on this can be found in the

BeanFactory section.

Obtaining the Id of a Recently Saved Bean

For new records, a GUID is generated and assigned to the record id field. Saving
new or existing records returns a single value to the calling routine, which is the id
attribute of the saved record. The id has the following format:

aaaaaaaa- bbbb- cccc-dddd- eeeeeeeeeeee

You can retrieve a newly created record's id with the following:

167 /2.508

/'] Create bean
$bean = BeanFact ory: : newBean($nodul e) ;

/| Popul at e bean fi el ds
$bean- >nane = ' Exanpl e Record';

/'] Save
$bean- >save();

//Retrieve the bean id
$record_id = $bean->id;

Saving a Bean with a Specific ID

Saving a record with a specific id requires the id and new with id attribute of the
bean to be set. When doing so, it is important that you use a globally unique
identifier. Failing to do so may result in unexpected behavior in the system. An
example setting an id is shown below:

/| Creat e bean
$bean = BeanFact ory: : newBean($nodul e) ;

//set the new fl ag
$bean->new with_id = true;

//Set the record id with a static id
$id = '38c90c70-7788-13a2-668d-513e2b8df 5el’ ;
$bean->id = $id;

/'l or have the system generate an id for you
[1$id = Sugarcrm Sugarcrm Util\Uuid:: uuidl()
/| $bean->id = $id;

/| Popul at e bean fi el ds
$bean- >nane = ' Exanpl e Record';

/'] Save
$bean- >save();

Setting new with id to true prevents the save method from creating a new id value
and uses the assigned id attribute. If the id attribute is empty and the new with id
attribute is set to true, the save will fail. If you would like for the system to

168 /2.508

generate an id for you, you can use Sugarcrm\Sugarcrm\Util\Uuid::uuid1().
Distinguishing New from Existing Records

To identify whether or not a record is new or existing, you can check the
fetched rows property. If the $bean has a fetched row, it was loaded from the
database. An example is shown below:

if (!isset($bean->fetched rowf'id])) {
/I new record
} else {
/] existing record

}

If you are working with a logic hook such as before save or after save, you should
check the arguments.isUpdate property to determine this as shown below:

<?php

if (!'defined('sugarEntry') || !sugarEntry) die('Not A Valid Entry Poin
t);

cl ass 1 ogi c_hooks_cl ass

{

function hook net hod($bean, $event, $argunents)

{
if (isset($argunents['isUpdate']) && $argunents['isUpdate'] ==
fal se) {
/I new record
} else {
[l existing record

}
2>

Retrieving a Bean by Unique Field

Sometimes developers have a need to fetch a record based on a unique field other
than the id. In previous versions you were able to use
the retrieve by string fields() method to accomplish this, however, that has now

169 /2.508

been deprecated. To search and fetch records, you should use the SugarQuery
builder. An example of this is shown below:

requi re_once('incl ude/ Sugar Query/ Sugar Query. php');
$sugar Query = new Sugar Query();

//fetch the bean of the nodule to query
$bean = BeanFactory:: newBean(' <nodul es>');

/lcreate first query

$sqgl = new Sugar Query();

$sql ->select('id);

$sql - >f ron($bean) ;

$sql - >Where() - >equal s(' <fi el d>, '<unique value>');

$result = $sql ->execute();
$count = count ($result);

if ($count == 0) {

//no results were found
} elseif ($count == 1) {

[/ one result was found

$bean = BeanFactory::getBean(' <nodul e>', $result[0]['id"]);
} else {

[Imultiple results were found

}

Updating a Bean
You can update a bean by fetching a record and then updating the property:

/'l Retrieve bean
$bean = BeanFactory::retrieveBean($nodul e, $id);

/Il Fields to update
$bean- >nane = ' Updated Nane';

/| Save
$bean- >save();

Note: Disabling row-level security when accessing a bean should be set to

170/2.508

true only when it is absolutely necessary to bypass security, for example, when
updating a Lead record from a custom Entry Point. An example of accessing the
bean while bypassing row security is:

$bean = BeanFactory::retrieveBean($nmodul e, $record _id, array('disabl
e row | evel security' => true));

Updating a Bean Without Changing the Date Modified

The SugarBean class contains an attribute called update date modified, which is
set to true when the class is instantiated and means that the date modified
attribute is updated to the current database date timestamp.

Setting update date modified to false would result in the date modified attribute
not being set with the current database date timestamp.

/I Retrieve bean
$bean = BeanFactory::retrieveBean($nodul e, $id);

/1 Set nodified flag
$bean- >updat e_date_nodified = fal se;

/Il Fields to update
$bean- >nanme = ' Updated Nane';

/| Save
$bean- >save();

Note: Disabling row-level security when accessing a bean should be set to

true only when it is absolutely necessary to bypass security, for example, when
updating a Lead record from a custom Entry Point. An example of accessing the
bean while bypassing row security is:

$bean = BeanFactory::retrieveBean($nodul e, $record_id, array('disabl
e row | evel security' => true));

Deleting a Bean

Deleting a bean can be done by fetching it then calling the mark deleted() method
which makes sure any relationships with related records are removed as well:

171/2.508

/I Retrieve bean
$bean = BeanFactory::retrieveBean($nodul e, $id);

//Set deleted to true
$bean- >mar k_del et ed($bhean- >i d) ;

/'] Save
$bean- >save();

Note: Disabling row-level security when accessing a bean should be set to

true only when it is absolutely necessary to bypass security, for example, when
updating a Lead record from a custom Entry Point. An example of accessing the
bean while bypassing row security is:

$bean = BeanFactory::retrieveBean($nmodul e, $record_id, array('disabl
e_row_| evel _security' => true));

Fetching Relationships

This section explains how the SugarBean class can be used to fetch related
information from the database.

Fetching Related Records

To fetch related records, load the relationship using the link:

[11f relationship is | oaded
if ($bean->load relationship($link)) {
/| Fetch rel ated beans
$rel at edBeans = $bean->$l i nk- >get Beans() ;

An example of this is to load the contacts related to an account:

/'l Load Account
$bean = BeanFactory::getBean(' Accounts', $id);

[11f relationship is | oaded
i f ($bean->load rel ationship('contacts')) {

172 12.508

/I Fetch rel ated beans
$rel at edBeans = $bean->cont act s- >get Beans() ;

Fetching Related Record IDs

To fetch only related record IDs, load the relationship using the link:

[11f relationship is | oaded
if ($bean->load relationship($link)) {
[/ Fetch related record |IDs
$rel at edBeans = $bean->$l i nk->get ();

An example of this is to load the record IDs of contacts related to an account:

[/ Load Account
$bean = BeanFactory::getBean(' Accounts', $id);

[11f relationship is | oaded

i f ($bean->load rel ationship('contacts')) {
/I Fetch rel ated beans
$rel at edBeans = $bean->cont act s- >get () ;

Fetching a Parent Record

Fetching a parent record is similar to fetching child records in that you will still
need to load the relationship using the link:

[11f relationship is | oaded
i f ($bean->load_rel ationship($link)) {
|/ Fetch rel ated beans
$r el at edBeans = $bean- >$l i nk- >get Beans() ;

$parent Bean = fal se;

if (!enpty($rel atedBeans)) {
/lorder the results
reset ($rel at edBeans) ;

1731/2.508

[/first record in the list is the parent
$par ent Bean = current ($rel at edBeans) ;

An example of this is to load a contact and fetch its parent account:

// Load Cont act
$bean = BeanFactory::getBean(' Contacts', $id);

[11f relationship is | oaded
i f ($bean->load_rel ationship('accounts')) {
/I Fetch rel ated beans
$rel at edBeans = $bean- >account s- >get Beans() ;

$par ent Bean = fal se;

if (lenpty($rel atedBeans)) {
/lorder the results
reset ($rel at edBeans) ;

[/first record in the list is the parent
$par ent Bean = current ($rel at edBeans) ;

Customizing Core SugarBeans

Overview

This article covers how to extend core SugarBean objects to implement custom
code. This can be used to alter the stock assignment notification message or to add
logic to change the default modules behavior.

Customizing a Core Module

The best approach to customizing a core SugarBean object is to become familiar
with how the core Bean operates and only modify the bean logic where absolutely
necessary. After understanding where you wish to make your customization in the
module Bean class, you can extend the class in the custom directory. In order to
avoid duplicating code from the core Bean class, it is always best to extend the
class rather than duplicate the class to the custom directory.

174 12.508

Extending the SugarBean

For this example, we will look at modifying the Leads SugarBean object. To extend
the core Leads bean, create the following file:

.Jcustom/modules/Leads/CustomLead.php
<?php
requi re_once 'nodul es/ Leads/ Lead. php';

cl ass CustonlLead extends Lead

{
/**

* Saves the record

* - You can use this nethod to inplenment before save or after sav
e logic

*

* @aram bool $check_notify

* @eturn string

*/
function save($check notify = FALSE)
{
$id = parent::save($check_notify);
return $id;
}
/**

* Retrieves a record
* - You can use this nethod to set properties when fetching a bea

n
*
* @aramstring $id
* @©par am bool $encode
* @aram bool $del et ed
* @eturn $this
*/
function retrieve($id = "'-1', $encode = true, $deleted = true)
{
return parent::retrieve($id, $encode, $del eted);
}
/**
* Calls customlogic events
* - You can use this nethod to watch for specific |ogic hook even
ts

1751/2.508

*

* @ar am $event
* @aram array $argunents
*/
function call _custom| ogi c($event, S$argunments = array())

{
}

parent::call _custom| ogi c($event, S$argunents);

Register the Custom Class

Once the custom SugarBean class file has been created, register that class to be
used by the module so that the BeanFactory knows which class to use. To register
the class you will create the following file in the ./custom/Extension/ directory:

.Jcustom/Extension/application/Ext/Include/customLead.php

<?php

/**

* The $objectList array, maps the nodul e nane to the Vardef property
* By default only a few core nodul es have this defined, since their d
ass/ Obj ect nanes differs fromtheir Vardef Property

**/

$obj ectList['Leads'] = 'Lead';

/'l $beanLi st maps the Bean/ Modul e name to the C ass nane
$beanLi st[' Leads'] = 'Custonlead';

/'l $beanFiles maps the Class nane to the PHP Class file
$beanFi | es[' Custonlead'] = 'custom nodul es/ Leads/ Cust onLead. php';

Note: The $objectList array only needs to be set on those modules that do not
have it set already. You can view ./include/modules.php to see the core modules
that have it defined already.

Once the registration file is in place, go to Admin > Repairs, and run a Quick
Repair and Rebuild so that the system starts using the custom class.

Things to Note

176 /2.508

Overriding a core SugarBean class comes with some caveats:

1. The custom class is only used when the product core code uses
the BeanFactory.

o For most circumstances, Sugar is set up to use BeanFactory,
however, legacy code or specific logic that is pairs core modules
together may use direct calls to a core SugarBean class, which
would then cause the custom class to not be used. In those
scenarios, it is recommended to use a logic look instead.

2. Extending the Cases module doesn't affect the email Import process.

3. If the $objectList property is not defined for the module, the custom object
will be used, however, things like Studio will no longer work correctly.

o For the example above, we defined the $objectList property for the
Leads module to make sure that Studio continued working as
expected. Without this definition, if you navigate to Admin > Studio,
fields and relationships will not render properly.

Implementing Custom SugarBean Templates

Overview

This article covers how to implement custom SugarBean templates, which can then
be extended by custom modules. It also covers vardef templates, which can more
portable and used by multiple modules. By default, Sugar comes with a few
templates such as Company, Person, Issue, and File templates.

Creating a Custom SugarBean Template

The following example will create a custom Bean template that can be used by
custom modules to shrink down the overall size of the Bean model, by only
implementing the two fields required by all modules, the id field and the deleted
field. In order to do this, we will have to override some core SugarBean methods,
as the base SugarBean is statically configured to do things like Save/Delete the
model with the date entered, date modified, modified user id and created user id
fields. In order to accommodate custom Beans that wish to use those fields, this
template will also have properties for configuring those types of fields so that they
are populated using the default SugarBean logic.

177 12.508

To create a template for use by custom modules, you create a class that extends
from SugarBean

in ./custom/include/SugarObjects/templates/<template name>/<class name>.php.
For this example, we will create the "bare" template with the following file:

.Jcustom/include/SugarObjects/templates/bare/BareBean.php
<?php

cl ass BareBean extends Sugar Bean

{

/**

* The configured nodified date field
* @ar string|false
*/
protected $ nodified date_field = fal se;

/**

* The configured nodified user field
* @ar string|false
*/
protected $ nodified user_field = fal se;

/**

* The configured created date field

* @ar string|false

*/

protected $ created_date field = fal se;

/**

* The configured created user field

* @ar string|false

*/

protected $ created_user_field = fal se;

/**

* Get the field name where nodified date is stored, if in use by
Modul e
* @eturn string|fal se

*/
public function getMdifiedDateField()
{
if ($this-> nodified date field !== FALSE){
$field = $this-> nodified date_field;
if (isset($this->field defs[$field]) && $this->field_defs|
$field]['type'] == '"datetine'){

1781/2.508

return $field;
}
}
return FALSE
}

/**

* Qverride the stock set Mbdifi edDate net hod
* - Check that field is in use by this Mdule

* - If in use, set the configured field to current tine
* @nheritdoc

**/

public function setMdifiedDate($date = '")

{
gl obal $ti nmedat e;

$field = $this->get ModifiedDateField();
if ($field !'== FALSE){
/1 This code was duplicated fromthe stock SugarBean::setM
odi fi edDat e
if ($this->update_date nodified || enpty($this->$field)) {
/1 This only needs to be calculated if it is going to

be used
if (enpty($date)) {
$date = $ti medat e- >nowDb();
}
$this->$field = $dat e;
}
}
}
/**

* Get the field name where nodified user IDis stored, if in use
by Modul e
* @eturn string|fal se
**/
public function getMdifiedUserField()
{
if ($this-> nodified user_field !== FALSE)({
$field = $this-> nodified user field,
if (isset($this->field_defs[$field]) && $this->field_defs]
$field]['type'] == 'assigned _user_nane'){
return $field,

}

179/2.508

return FALSE;
}

/**

* Override the stock setMbdifiedUser Method
* - Check that field is in use by this Mdule
* - If in use, set the configured field to user_id
* @nheritdoc
* @aram User| null $user [description]
*/
public function setMdifiedUser(User $user = null)
{
gl obal $current user;
$field = $this->getMdifiedUserFiel d();
if ($field !== FALSE){
/1 1f the update date nodified by flag is set then carry o
ut this directive
i f ($this->update_nodified_by) {
/1l Default the nodified user id to the default
$this->$field = 1;

/1 1f a user was not presented, default to the current

user
if (enpty($user)) {
$user = $current user;
}
/[l If the user is set, use it
if (lenmpty($user)) {
$t his->$field = $user->id;
}
}
}
}
/**

* Get the field name where created date is stored, if in use by M
odul e
* @eturn string|fal se

*/
public function getCreatedDat eFi el d()
{
if ($this-> created date field !== FALSE){
$field = $this-> created_date _field;
if (isset($this->field defs[$field]) && $this->field_defs|
$field]['type'] == '"datetine'){

180/2.508

return $field;
}
}
return FALSE;
}

/**

* Get the field nanme where created user IDis stored, if in use b
y Modul e
* @eturn string|fal se
*/
public function getCreatedUserFiel d()
{
if ($this-> created_user_field !== FALSE){
$field = $this-> created_user_field;
if (isset($this->field_defs[$field]) && $this->field_defs]
$field]['type'] == 'assigned _user_nane'){
return $field,
}
}
return FALSE;

}

/**

* Override the stock set CreateData nethod

* - Code was duplicated fromstock, to acconmpdate not having cre
ated date or created user fields

* @nheritdoc

*/

public function setCreateData($i sUpdate, User $user = null)

{

if (!$isUpdate) {
gl obal $current user;

$field = $this->get CreatedDat eFi el d();
if ($field !'== FALSE){
[/ Duplicated from SugarBean: : set CreateData with nodifi
cations for dynamc field nane
if (empty($this->$field)) {
$t his->$field = $thi s->get Dat eModi fi ed();
}

if (empty($this->$field))(
gl obal $ti medat e;
$this->$field = $ti nedat e->nowDb() ;

181/2.508

}

$field = $this->get CreatedUserField();
if ($field ! == FALSE){
[/ Duplicated from SugarBean: : set CreateData with nodifi
cations for dynamc field nane
if ($this->set created by == true) {
/'l created by should al ways be this user
/1l unless it was set outside of the bean

if ($user) {
$t his->$field = $user->id;
} else {

$this->$field

i sset ($current _user) ? $curren
t _user->id: "";

}

if ($this->newwith id == fal se) {
$this->d = Sugarcrm Sugarcrm Util\ Uuid::uuidl();
}

}

/**

* Get the Date Modified fields val ue
* @eturn m xed| fal se

*/
public function getDateMdified()
{
if ($this-> nodified date field !== FALSE){
$field = $this-> nodified date_field;
return $this->%$field,
}
return FALSE;
}
/**

* Get the Date Created Fields val ue
* @eturn m xed| fal se
*/
public function getDateCreated()
{
if ($this-> created date field !== FALSE){
$field = $this-> created date field;
return $this->%field;

182 /2.508

}
return FALSE

}
/**
* @nheritdoc
*/
public function nmark_del et ed($i d)
{

$date_nodified = $GAOBALS['ti nedate']->nowDb();
if (isset($_SESSION'show deleted])) {
$t hi s->mar k_undel et ed($i d);
} else {
/'l Ensure that Activity Messages do not occur in the conte
xt of a Delete action (e.g. unlink)
/1 and do so for all nested calls within the Top Level De
et e Cont ext
$opflag = static::enterOperation('delete');
$aflag = Activity::isEnabled();
Activity::disable();
/1 call the custom business |ogic
$custom | ogic_argunments['id'] = $id;
$t his->call _custom | ogic("before delete", $customlogic_ar
gunents) ;
$thi s->del eted = 1,

if (isset($this->field defs['teamid'])) {
if (enpty($this->teans)) ({
$t hi s->l oad rel ationship('teans');

}

if (lempty($this->teans)) {
$t hi s- >t eans- >r enoveTeantet Modul e() ;
}
}

$t hi s->mark_rel ati onshi ps_del eted($id);
$updateFields = array('deleted => 1);
$field = $this->get ModifiedDateFiel d();
if ($field !'== FALSE){

$t hi s- >set Modi fi edDat e() ;
$updat eFi el ds[$fi el d] = $this->%field;

183/2.508

e_nodi fi

unents) ;

}

/**

$field = $this->get Modi fi edUserField();
if ($field !== FALSE){
$t hi s- >set Modi fi edUser () ;
$updat eFi el ds[$fi el d] = $t his->%field;
}

$t hi s- >db- >updat ePar ans(
$t hi s- >t abl e_nane,
$t his->field defs,
$updat eFi el ds,
array('id => $id)
);

if ($this->isFavoritesEnabled()) {
Sugar Favorites:: mar kRecor dDel et edl nFavorites($i d, $dat
ed);
}

[l Take the itemoff the recently viewed lists
$tracker = BeanFactory::newBean(' Trackers');
$t racker - >makel nvi si bl eFor Al | ($i d);

Sugar Rel at i onshi p: : resaveRel at edBeans() ;

/1 call the custom business |ogic
$this->call _custom|logic("after_delete", $customlogic _arg

if(static::leaveQperation('delete', $opflag) && $aflag) {
Activity::enable();
}

* @nheritdoc

*/
publ
{

ents);

ic function mark_undel et ed($i d)

/1 call the custom business |ogic
$custom | ogic_argunments['id'] = $id;
$t his->call _custom|ogic("before restore”, $custom| ogic_argum

$t hi s->del eted = O;
$nodi fied date field = $this->get MdifiedDateField();
if ($nodified date field !== FALSE){

184 /2.508

$t hi s->set Modi fi edDat e() ;
}

$query = "UPDATE {$thi s->table_nane} SET deleted = ?". (! $nodi f
ied date field?"":",$nodified date field = ?")." WHERE id = ?";

$conn = $t hi s- >db- >get Connection();

$parans = array(S$t hi s->del eted);

if ($nodified _date field){

$parans[] = $this->%$nodified date field;

}

$parans[] = $id;

$conn- >execut eQuery($query, $parans);

/1l call the custom business |ogic
$this->call _customlogic("after restore", $customlogic_argune
nts);

With the Bean template in place, we can define the default vardefs for the template
by creating the following file:

.Jcustom/include/SugarObjects/templates/bare/vardefs.php
<?php

$vardefs = array(

"audited' => fal se,

"favorites' => fal se,

"activity_enabl ed" => fal se,

"fields' => array(

"id => array(

"nanme' => 'id',
‘vhane' => 'LBL_ID,
"type' =>'id',
"required" => true,
"reportable’ => true,
"duplicate_on_record_copy' => 'no',
‘coment' => '"Unique identifier',
"mandatory_fetch' => true,

)

el eted => array(
"nane' => 'deleted',
‘vname' => 'LBL_DELETED ,

185/2.508

"type' => 'bool",
"default’' => "'0",
"reportable’ => fal se,
"duplicate_on_record_copy' => 'no',
‘coment' => 'Record del etion indicator’
)
)
"indices' => array(
"id => array(
"nane' => 'idx_' . preg_replace('/["a-
z0-9 \-]/i', "', strtolower($nodule)) . ' pk',
"type' => 'primry',
"fields' => array('id")

)

eleted" => array(
‘nane' => 'idx_' . strtolower($table_nane) . '_id_del",
"type' => 'index',
"fields' => array('id , '"deleted)
)
)

uplicate_check' => array(
"enabl ed" => false

Note: This vardef template also shrinks the SugarBean template down even
further, by defaulting auditing, favorites, and activity stream to false.

Using a Custom Bean Template

With the custom SugarBean template in place, we can now implement the template
on a custom module. Typically if you deployed a module from Module Builder,
there would be two classes generated by Sugar, "custom Module sugar" and
“custom Module". The " sugar" generated class extends from the Bean template
that was selected in Module Builder, and the primary Bean class is what is utilized
in the system and where your development would take place. For the above
example template that is created, the assumption is that you are writing the Bean
class, rather than using the generated classes by Module Builder, or at the very
least removing the intermediary " sugar" class generated by Module Builder and
extending from the desired template. If you deployed a module via Module Builder,
and are going to switch to a custom template, please note that some of the stock
templates contain internal logic for the setup of fields for that template and that
would need to be duplicated if you intend to continue using those fields. The stock
templates, located in ./include/SugarObjects/templates/, are available for your

186 /2.508

reference to copy over any of the required logic to your custom Bean class. With all
that being said, let us take a look at a custom Bean class that extends from our
custom template.
This example will use the "custom Module" module which is a module that will be
used for Tagging records. Since the module is just storing tags, a slimmed down
Bean works well as we only need a "name" field to store those tags. The following
class would implement the custom Bean template created above.
./modules/custom Module/custom Module.php

<?php

requi re_once 'customincl ude/ Sugar Obj ect s/t enpl at es/ bar e/ Bar eBean. php'

cl ass cust om Modul e extends BareBean {

public $new schema = true;

public $rmodul e_dir = 'custom Mdul e';
publ i c $object nanme = 'custom Mdul e';
public $table_name = 'custom Mdul e';
public $inportable = true;

public $id;

public $nane;

public $del et ed;

public function __ construct(){
parent:: _construct();

}

public function bean_inpl enments($interface){
swi tch($interface)({
case 'ACL': return true;

}

return fal se;

With the modules SugarBean class created, the other thing that needs to be
implemented is the vardefs.php file:

187 /2.508

./modules/custom Module/vardefs.php
<?php

$nodul e = ' cust om Modul e';
$t abl e_nane = strtol ower ($nodul e);

$di cti onary[$nodul e] = array(
"tabl e' => $tabl e nane,
"fields' => array(
"nanme' => array(
"name’ => ' npane'
"vnanme' => 'LBL_NAME
"type' => 'usernane',
"link' => true,
"dbType' => 'varchar"',
"len' => 255,
"uni fied _search’' => true,
"full _text _search' => array(),
"required" => true,
"inportable' => 'required',
"duplicate_nmerge' => 'enabled,
/1" duplicate nmerge domyvalue' =>"'3",
"merge_filter' => 'selected,
"duplicate _on_record copy' => 'always',
),

)

"rel ationships' => array (

)

"optimstic_locking' => fal se,

"unified search' => fal se,

);

Var def Manager : : cr eat eVar def (
$nmodul e,
$nodul e,

/1 Specify the bare tenplate to be used to create the vardefs
array(' bare')

With these files implemented, the "custom Module" module would implement the
"bare" template we created.

188/2.508

Creating Custom Vardef Templates

For some customizations, you might not need a SugarBean template as you may
not be implementing logic that needs to be shared across multiple module's Bean
classes. However, you may have field definitions that are common across multiple
modules that would be beneficial for implementing as Vardef Templates. To create
a vardef template, a file as follows,
.Jcustom/include/SugarObjects/implements/<template name>/vardefs.php.

Continuing on with our example custom Module module from above, we might
want to have a creation date on this custom tags module since our 'bare'
SugarBean template does not come with one by default. We could easily just add
one in the modules vardef file, but for our example purposes, we know that we will
use our 'bare' SugarBean template on other customizations, and on some of those
we might also want to include a creation date. To implement the vardef template
for the creation date field, we create the following:

.Jcustom/include/SugarObjects/implements/date entered/vardefs.php
<?php

$vardefs = array(
"fields' => array(
"date_entered => array(

"nanme' => 'date_entered',

"vnane' => 'LBL_DATE ENTERED ,

"type' => 'datetine',

'group’ => 'created_by nane',

"comment' => 'Date record created',

"enabl e_range_search' => true,

"options' => 'date_range_search_don ,

"studi o' => array(
"portaleditview => false,

),

"duplicate_on_record _copy' =>

"readonly' => true,

"massupdate’ => fal se,

"full _text_search' => array(
"enabl ed" => true,
'searchabl e’ => fal se

no ,

),
)
),
"indices' => array(
"date_entered' => array(

189/2.508

"name’ => "'idx_' . strtolower($table nane) . ' _date_entere

"type' => 'index',
"fields' => array(' date_entered')

Using a Custom Vardef Template

Once the vardef template is in place, you can use the template by adding it to the
‘uses' array property of your module vardefs. Continuing with our example module
custom Module, we can update the vardefs file as follows:

./modules/custom Module/vardefs.php
<?php

$nodul e = ' cust om Modul €' ;
$tabl e_name = strtol ower ($nodul e);

$di ctionary[$nodul e] = array(
‘tabl e’ => $tabl e_namne,
"fields' => array(
'nanme' => array(
'nane’ => 'nane',
"vname' => 'LBL_NAME
‘type' => 'usernane',
"link' => true,
"dbType' => 'varchar',
‘len' => 255,
"unified search' => true,
"full _text _search' => array(),
‘required => true,
"inportable' => 'required',
"duplicate_nmerge' => 'enabled,
/1" duplicate_nerge _domval ue' =>"'3",
"merge_filter' => 'selected,
"duplicate_on_record_copy' => 'always',
),

),

"rel ationships' => array (

),

/1 Add the desired vardef tenplates to this |ist

190/ 2.508

"uses' => array(
‘date_entered

)

ptimstic_locking'" => fal se,
"unified search' => fal se,

),

Var def Manager : : cr eat eVar def (
$nodul e,
$nodul e,
/1 Specify the bare tenplate to be used to create the vardefs
array(' bare')

After a Quick Repair and Rebuild, a SQL statement should be generated to update
the table of the module with the new date entered field that was added to the
vardefs using the vardef template.

BeanFactory

Overview

The BeanFactory class, located in ./data/BeanFactory.php, is used for loading an
instance of a SugarBean. This class should be used any time you are creating or
retrieving bean objects. It will automatically handle any classes required for the
bean.

Creating a SugarBean Object

newBean()

To create a new, empty SugarBean, use the newBean() method. This method is
typically used when creating a new record for a module or to call properties of the

module's bean object.

$bean = BeanFact ory: : newBean($nodul e) ;

newBeanByName()

Used to fetch a bean by its beanList name.

191/2.508

$bean = BeanFact ory: : newBeanByNane($nane) ;

Retrieving a SugarBean Object

getBean()

The getBean() method can be used to retrieve a specific record from the database.
If a record id is not passed, a new bean object will be created.

$bean = BeanFactory:: get Bean($nodul e, $record_id);

Note: Disabling row-level security when accessing a bean should be set to

true only when it is absolutely necessary to bypass security, for example when
updating a Lead record from a custom Entry Point. An example of accessing the
bean while bypassing row security is:

$bean = BeanFactory: : get Bean($nodul e, $record_id, array('disable_row
_level _security' => true));

retrieveBean()

The retrieveBean() method can also be used to retrieve a specific record from the
database. The difference between this method and getBean() is that null will be
returned instead of an empty bean object if the retrieve fails.

$bean = BeanFactory::retrieveBean($nodul e, $record_id);

Note: Disabling row-level security when accessing a bean should be set to true
only when it is absolutely necessary to bypass security, for example, when
updating a Lead record from a custom Entry Point. An example of accessing the
bean while bypassing row security is:

$bean = BeanFactory::retrieveBean($nmodul e, $record_id, array('disabl
e row | evel security' =>true));

Retrieving Module Keys

192 /2.508

getObjectName()
The getObjectName() method will return the object name / dictionary key for a
given module. This is normally the same as the bean name, but may not be for

some modules such as Cases which has a key of 'aCase' and a name of 'Case".

$nodul eKey = BeanFactory: : get Obj ect Nane($nodul eNane) ;

getBeanName()

The getBeanName() method will retrieve the bean class name given a module
name.

$nodul e ass = BeanFact ory: : get BeanNane($nodul e) ;

Vardefs

Overview

Vardefs (Variable Definitions) provide the Sugar application with information
about SugarBeans. Vardefs specify information on the individual fields,
relationships between beans, and the indexes for a given bean.

Each module that contains a SugarBean file has a vardefs.php file located in it,
which specifies the fields for that SugarBean. For example, the vardefs for the
Contact bean are located in ./modules/Contacts/vardefs.php.

Dictionary Array

Vardef files create an array called $dictionary, which contains several entries
including tables, fields, indices, and relationships.

e table : The name of the database table (usually, the name of the module)
for this bean that contains the fields

e audited : Specifies whether the module has field-level auditing enabled

e duplicate_check : Determines if duplicate checking is enabled on the
module, and what duplicate check strategy will be used if enabled.

e fields : A list of fields and their attributes

193/2.508

e indices : A list of indexes that should be created in the database
e optimistic_locking : Determines whether the module has optimistic
locking enabled
o Optimistic locking prevents loss of data by using the bean's
modified date to ensure that it is not being modified simultaneously
by more than one person or process.
e unified_search : Determines whether the module can be searched via
Global Search

o This setting defaults to false and has no effect if all of the fields in
the fields array have the 'unified search' field attribute set to false.
e unified_search_default_enabled : Determines whether the module should
be searched by default for new users via Global Search
o This setting defaults to true but has no effect if unified search is set
to false.
e visibility : A list of visibility classes enabled on the module

Duplicate Check Array
The duplicate check array contains two properties, that control if duplicate
checking is enabled on the module, and which duplicate check strategy will be

used to check for duplicates.

The two properties for the array are as follows:

Name Type Description

enabled Boolean Specifies whether or not
the Bean is utilizing the
duplicate check
framework

<class name> Array <class name> is the name
of the duplicate check
strategy class that is
handling the duplicate
checking. It is set to an
array of Metadata, specific
to the strategy defined

in the key. Review the
Duplicate Check
Framework for further
information.

Fields Array

The fields array contains one array for each field in the SugarBean. At the top level

194 /2.508

of this array, the key is the name of the field, and the value is an array of attributes
about that field.

The list of possible attributes are as follows:

e name : The name of the field

e vname : The language pack ID for the label of this field

e type : The type of the attribute

assigned_user name : A linked user name

bool : A boolean value

char : A character array

date : A date value with no time

datetime : A date and time

email : An email address field

enum : An enumeration (dropdown list from the language pack)

id : A database GUID

image : A photo-type field

link : A link through an explicit relationship. This attribute should

only be used when working with related fields. It does not make the

field render as a link.

o name : A non-database field type that concatenates other field

values

phone : A phone number field to utilize with callto:// links

relate : Related bean

team _list : A team-based ID

text : A text area field

url : A hyperlinked field on the detail view

varchar : A variable-sized string

e table : The database table the field comes from.

o The table attribute is only needed to join fields from another table
outside of the module in focus.

e isnull : Whether the field can contain a null value

e len : The length of the field (number of characters if a string)

e options : The name of the enumeration (dropdown list) in the language
pack for the field

e dbtype : The database type of the field (if different than the type)

e reportable : Determines whether the field will be available in the Reports
and Workflow modules

e default : The default value for this field. Default values for the record are
populated by default on create for the record view (for Sidecar modules)
and edit view (for Legacy modules) layout but can be modified by users.
The Default Value option is available for all data type fields except HTML,
Image, Flex Relate, and Relate.

e massupdate : Determines whether the field will show up in the mass-
update panel on its module's list view

o Some field types are restricted from mass update regardless of this

o O 0O o0 o O O o o o

o O O O o o

195/2.508

setting.
e rname : For relate-type fields, the field from the related variable that
contains the text
e id_name : For relate-type fields, the field from the bean that stores the ID
for the related bean
e source : Set to 'non-db' if the field value does not come from the database
o The source attribute can be used for calculated values or values
retrieved in some other way.
e sort_on : The field to sort by if multiple fields are used in the presentation
of field's information
e fields : For concatenated values, an array containing the fields that are
concatenated
e db_concat_fields : For concatenated values, an array containing the fields
to concatenate in the database
e unified_search : Determines whether the field can be searched via Global
Search
o This has no effect if the dictionary array setting 'unified search' is
not set to true.
 enable _range_search : For date, datetime, and numeric fields, determines
if this field should be searchable by range in module searches
e dependency : Allows a field to have a predefined formula to control the
field's visibility
e studio : Controls the visibility of the field in the Studio editor
o If set to false, then the field will not appear in any studio screens for
the module. Otherwise, you may specify an Array of view keys from
which the field's visibility should be removed
(e.g. array('listview'=>false) will hide the field in the listview layout
screen).

The following example illustrates a standard ID field for a bean:

"id => array (
"nanme' => 'id',
‘vname' => 'LBL_ID,
"type' =>'id',
"required" => true,

),

Indices Array

This array contains a list of arrays that are used to create indices in the database.
The fields in this array are:

196/ 2.508

name : The unique name of the index

type : The type of index (primary, unique, or index)

fields : An ordered array of the fields to index

source : Set to 'non-db' if you are creating an index for added application
functionality such as duplication checking on imports

The following example creates a primary index called 'userspk' on the 'id' column:

array/(
"nanme' => 'userspk',
‘type' => 'primary',
"fields'=> array('id")

),

Relationships Array

The relationships array specifies relationships between beans. Like the indices
array entries, it is a list of names with array values.

lhs module : The module on the left-hand side of the relationship

lThs table : The table on the left-hand side of the relationship

lThs key : The primary key column of the left-hand side of the relationship
rhs_module : The module on the right-hand side of the relationship
rhs_table : The table on the right-hand side of the relationship

rhs _key : The primary key column of the right-hand side of the relationship
relationship_type : The type of relationship (e.g. one-to-many, many-to-
many)

e relationship role column : The type of relationship role

e relationship role column_value : Defines the unique identifier for the
relationship role

The following example creates a relationship between a contact and the contact
that they report to. The reports to id field maps to the id of the record that
belongs to the higher-ranked contact. This is a one-to-many relationship in that a
contact may only report to one person, but many people may report to the same
contact.

‘contact _direct _reports' => array(
"l hs_nodul e' => 'Contacts',
'l hs_table' => 'contacts',
"l hs_key' =>"id",
'rhs_nodul e' => ' Contacts',

197 /2.508

'rhs_table' => 'contacts',
"rhs_key' => "reports_to_id",
"rel ati onship_type' => 'one-to-nmany'

),

Visibility Array

The visibility array specifies the row level visibility classes that are enabled on the
bean. Each entry in the array, is a key-value pair, where the key is the name of the
Visibility class and the value is set to boolean True. More information on
configuring custom Visibility strategies can be found in the Architecture section
under Visibility Framework.

Extending Vardefs

More information about extending and overriding vardefs can be found in the
Extensions Framework documentation under Vardefs.

Specifying Custom Indexes for Import Duplicate
Checking

Overview

When importing records to Sugar via the Import Wizard, users can select which of
the mapped fields they would like to use to perform a duplicate check and thereby
avoid creating duplicate records. This article explains how to enable an additional
field or set of fields for selection in this step.

Step 4: Check for Possible Duplicates

To avoid creating duplicate records, select which of the mapped fields you would like to use to
perform a duplicate check while data is being imported. Values within existing records in the selected
fields will be checked against the data in the import file. If matching data is found, the rows in the
import file containing the data will be displayed along with the import results (next page). You will then
be able to select which of these rows to continue importing.

Fields to Check Available Fields
Billing City
Email Address

Name

198/2.508

Resolution

The import wizard's duplicate check operates based on indices defined for that
module. You can create a non-database index to check for a field. It is important
that it is non-database as single column indices on your database can hamper
overall performance. The following is an example to add the home phone field to
the Contact module's duplicate check.

First, create the following file from the root directory of your Sugar installation on
the web server:

./ cust om Ext ensi on/ nodul es/ Cont act s/ Ext / Var def s/ cust om_i nport _i ndex. ph
p

When creating the file, keep in mind the following requirements:

e The name of the file is not important, as long as it ends with a .php
extension.

e The rest of the directory path is case sensitive so be sure to create the
directories as shown.

e If you are creating the import index for a module other than Contacts, then
substitute the corresponding directory name with that module.

e Ensure that the entire directory path and file have the correct ownership
and sufficient permissions for the web server to access the file.

The contents of the file should look similar to the following code:
<?php

$dictionary[' Contact']J['indices'][] = array(
"nanme’ => 'idx_honme_phone_cstm,
"type' => 'index',
"fields' => array(
0 => ' phone_hone',
),

"source' => 'non-db',

Please note that the module name in line 2 of the code is singular (i.e. Contact, not
Contacts). If you are unsure of what to enter for the module name, you can verify
the name by opening the

199/2.508

.Jcache/modules/<module name>/<module name>vardefs.php file. The second
line of that file will have text like the following:

$GLOBALS["dictionary"]["Contact"] = array (

The parameter following "dictionary" is the same parameter you should use in the
file defining the custom index. To verify duplicates against a combination of fields
(i.e. duplicates will only be flagged if the values of multiple fields match those of an
existing record), then simply add the desired fields to the 'fields' array in the code
example.

Finally, navigate to Admin > Repair > Quick Repair and Rebuild to enable the
custom index for duplicate verification when importing records in the module.

Working With Indexes

Overview
Sugar provides a simple method for creating custom indexes through the vardef
framework. Indexes can be built on one or more fields within a module. Indexes

can be saved down to the database level or made available only in the application
for functions such as Import Duplicate Checking.

Index Metadata

Indexes have the following metadata options that can be configured per index:

Key Value Description

name string A Unique identifier to
define the index. Best
practices recommend
indexes start with idx and
contain the suffix cstm to
avoid conflicting with a
stock index.

Note : Some databases
have restrictions on the
length of index names.
Please check with your
database vendor to avoid

200/ 2.508

any issues.

type string All indexes should use the
type of "index"
fields array A PHP array of the fields

for the index to utilize

source string Specify as "non-db" to
avoid creating the index in
the database

Creating Indexes

Stock indexes are initially defined in the module's vardefs file under the indices
array. For reference, you can find them using the vardef path of your module. The
path will be ./modules/<module>/vardefs.php.

Custom indexes should be created using the Extension Framework. First, create a
PHP file in the extension directory of your desired module. The path should similar
to ./custom/Extension/modules/<module>/Ext/Vardefs/<name>.php.

In the new file, add the appropriate $dictionary reference to define the custom
index:

<?php

$dictionary[' <npdule>']['indices'][] = array(
"nane' => '<jndex nane>',
"type' => "index',
"fields' => array(
‘fieldl",
‘field2',
)
);

Note : For performance reasons, it is not recommended to create an index on a
single field unless the source is set to non-db.

Once installed,you will need to navigate to Admin > Repair > Quick Repair and

Rebuild to enable the custom index. You will need to execute any scripts generated
by the rebuild process.

Removing Indexes

201/2.508

Stock indexes are initially defined in the module's vardefs file under the indices
array. For reference, you can find them using the vardef path of your module. The
path will be ./modules/<module>/vardefs.php.

Stock indexes should be removed using the Extension Framework. First, create a
PHP file in the extension directory of your desired module. The path should similar
to ./custom/Extension/modules/<module>/Ext/Vardefs/<name>.php.

In the new file, loop through the existing 'indices' sub-array of the $dictionary to
locate the stock index to remove, and use unset() to remove it from the array.

Example

The following is an example to remove the idx calls date start index from the Call
module's vardefs.

First, create ./custom/Extension/modules/Calls/Ext/Vardefs/remove idx calls date
start.php from the root directory of your Sugar installation on the web server.
When creating the file, keep in mind the following requirements:

e The name of the file is not important, as long as it ends with a .php
extension.

e The rest of the directory path is case sensitive so be sure to create the
directories as shown.

e If you are removing the index for a module other than Calls, then substitute
the corresponding directory name with that module.

e Ensure that the entire directory path and file have the correct ownership
and sufficient permissions for the web server to access the file.

The contents of the file should look similar to the following code:
<?php

$cal | _i ndexes
$renove_i ndex

= $dictionary['Call"']["'indices'];
= "idx_calls date start";
foreach($cal | _i ndexes as $i ndex_key => $index_item ({
if($index_iten]' nane'] == $renove_index) {
unset ($dictionary[' Call']["indices'][$index_key]);
}

Note : Removing the reference to the index from the module's indices array does
not actually remove the index from the module's database table. Removing the

202 /2.508

reference from the indices array ensures that the index is not added back to the
module's database table when performing any future Quick Repair and Rebuilds.
The database index must be removed directly at the database level. On MySQL,
with the current example, this could be done with a query like:

ALTER TABLE calls DROP INDEX idx_calls_date_start;

Once installed,you will need to navigate to Admin > Repair > Quick Repair and
Rebuild to remove the index from the $dictionary array. You will need to execute
any scripts generated by the rebuilding process.

Creating Indexes for Import Duplicate Checking

When importing records to Sugar via the Import Wizard, users can select which of
the mapped fields they would like to use to perform a duplicate check and thereby
avoid creating duplicate records. The following instructions explain how to enable
an additional field or set of fields for selection in this step.

Step 4: Check for Possible Duplicates

To avoid creating duplicate records, select which of the mapped fields you would like to use to
perform a duplicate check while data is being imported. Values within existing records in the selected
fields will be checked against the data in the import file. If matching data is found, the rows in the
import file containing the data will be displayed along with the import results (next page). You will then
be able to select which of these rows to continue importing.

Fields to Check Available Fields
Billing City
Email Address

Name

Example

The following is an example to add the home phone field to the Contact module's
duplicate check.

First, create
.Jcustom/Extension/modules/Contacts/Ext/Vardefs/custom import index.php from
the root directory of your Sugar installation on the web server. When creating the
file, keep in mind the following requirements:

203/2.508

e The name of the file is not important, as long as it ends with a .php
extension.

e The rest of the directory path is case sensitive so be sure to create the
directories as shown.

e If you are creating the import index for a module other than Contacts, then
substitute the corresponding directory name with that module.

e Ensure that the entire directory path and file have the correct ownership
and sufficient permissions for the web server to access the file.

The contents of the file should look similar to the following code:
<?php

$dictionary['Contact']['indices'][] = array(
"nanme' => 'idx_honme_phone_cstni,
"type' => 'index',
"fields' => array(
0 => ' phone_hone',

)

ource' => 'non-db',

Please note that the module name in line 2 of the code is singular (i.e. Contact, not
Contacts). If you are unsure of what to enter for the module name, you can verify
the name by opening the

.Jcache/modules/<module name>/<module name>vardefs.php file. The second
line of that file will have text like the following:

$AOBALS["dictionary"]["Contact"] = array (...);

The parameter following "dictionary" is the same parameter you should use in the
file defining the custom index. To verify duplicates against a combination of fields
(i.e. duplicates will only be flagged if the values of multiple fields match those of an
existing record), then simply add the desired fields to the 'fields' array in the code
example.

Finally, navigate to Admin > Repair > Quick Repair and Rebuild to enable the
custom index for duplicate verification when importing records in the module.

Fields

204 /2.508

Overview

How fields interact with the various aspects of Sugar.

SugarField Widgets

The SugarField widgets, located in ./include/SugarFields/Fields/ , define the

data formatting and search query structure for the various field types. They also
define the rendering of fields for modules running in backward compatibility mode.
When creating or overriding field widgets, developers should place their
customization in ./custom/include/SugarFields/Fields/. For information on how
Sidecar renders fields, please refer to the fields section in our user

interface documentation. Creating Custom Fields

Implementation

All fields for a module are defined within vardefs. Within this definition, the type
attribute will determine all of the logic applied to the field. For example, the
Contacts module has a 'Do Not Call' field. In the vardefs, this field is defined as
follows:

"do_not _call' => array (

"nanme' => 'do_not _call', // the nanme of the field

"vnanme' => 'LBL_DO NOT_CALL', // the label for the field nanme

"type' => '"bool', // the fields type

"default’' => "0, // the fields default val ue

"audited =>true, // whether the field is audited

"duplicate_on_record _copy' => "always', // whether to duplicate th
e fields val ue when bei ng copied

‘comrent’ => 'An indicator of whether contact can be called // ad
mn context of the field

),

The bool type field is rendered in the UI from the ./clients/base/fields/bool/bool.js
field controller which renders the appropriate handlebars template as defined by
the users current view for sidecar enabled modules. When the user saves data, the
controller formats the data for the API and passes it to an endpoint. Once the data
is received by the server, The SugarField definition calls any additional logic in the
apiSave function to format the data for saving to the database. The same concept
is applied in the apiFormatField function when retrieving data from the database
to be passed back to the user interface through the API. For modules running in
backward compatibility mode, the bool field is rendered using the Smarty .tpl)
templates located in ./include/SugarFields/Fields/Bool/.

205/2.508

While the vardefs define the default type for a field, this value can be overridden in
the metadata of the view rendering the field. The example being that in
.Jcustom/modules/Contacts/clients/base/views/record/record.php, you can modify
the do not call field array to point to a custom field type you have created. For
more information on creating custom field types, please refer to Creating Custom
Fields documentation.

Relationships

Overview

Relationships are the basis for linking information within the system. This
page explains the various aspects of relationships. For information on custom
relationships, please refer to the Custom Relationships documentation.

Definitions

Relationships are initially defined in the module's vardefs file under the
relationships array. For reference, you can find them using the vardef
path ./ modules/<module>/vardefs.php.

Database Structure

In Sugar, most relationships are stored using a joining table. This applies to both
one-to-many (1:M) relationships as well as many-to-many (M:M) relationships. An
example of this is the relationship between Accounts and Opportunities where
there are three tables: accounts, accounts opportunities, and opportunities. You
will find that the joining table, accounts opportunities, will contain the fields
needed in order to establish the relationship link.

The fields on the accounts opportunities table are listed below:

Fields Description

id A unique identifier for the relationship
row (not typically used)

opportunity id The ID for the related
opportunity record. This is named
uniquely based on the relationship

account id The ID for the related account record.

206/ 2.508

This is named uniquely based on the
relationship
date modified The date the row was last modified
deleted Whether or not the relationship still
exists

Relationship Cache

All relationships in Sugar are compiled into the cache directory
.Jcache/Relationships/relationships.cache.php. If needed, the relationships cache
can be rebuilt by navigating to Admin > Repair > Rebuild Relationships.

Custom Relationships

Overview

This page needs an overview

Creating Custom Relationships
Relationships are initially defined in the module's vardefs file under the
relationships array. For reference, you can find them using the vardef path as

follows:

./ modul es/ <nmodul e>/ var def s. php

Custom relationships are created in a different way using the Extension
Framework. The process requires two steps which are explained in the following
sections:

1. Defining the Relationship MetaData
2. Defining the Relationship in the TableDictionary

Defining the Relationship MetaData
The definitions for custom relationships will be found in a path similar to:

./ cust om net adat a/ <r el at onshi p nane>Met aDat a. php

207/ 2.508

This file will contain the $dictionary information needed for the system to generate
the relationship. The $dictionary array will contain the following:

ble

Index Type Description

true relationship type String The relationship's
structure (possible values:
‘one-to-many' or 'many-to-
many')

from studio Boolean Whether the relationship
was created in Studio

table String The name of the table that
is created in the database
to contain the link ids

fields Array An array of fields to be
created on the
relationship join table

indices Array The list of indexes to be
created

relationships Array An array defining
relationships

relationships.<rel> Array The array defining the
relationship

relationships.<rel>.lhs m |String Left-hand module (should

odule match $beanList index)

relationships.<rel>.lhs ta |String Left-hand table name

ble

relationships.<rel>.lhs ke |String The key to use from the

y table on the left

relationships.<rel>.rhs m |String Right-hand module

odule (should match $beanList
index)

relationships.<rel>.rhs ta |String Right-hand table name

ble

relationships.<rel>.rhs ke |String The key to use from the

y table on the right

relationships.<rel>.relatio |String The relationship type,

nship type typically stored as 'many-
to-many'

relationships.<rel>.join ta|String The join table

208 /2.508

relationships.<rel>.join_k |String
ey lhs

Left table key, should exist
in table field definitions
above

relationships.<rel>.join k |String
ey rhs

Right table key, should
exist in table field
definitions above

MetaData Example

Creating a custom 1:M relationship between Accounts and Contacts will yield the

following metadata file:

.Jcustom/metadata/accounts contacts 1MetaData.php

<?php
/] created: 2013-09-20 15:15:47

$di ctionary["accounts_contacts_1"] =

"true_relationship type' => 'one-to-nmany',

"fromstudio => true,
"rel ati onshi ps' =>
array (
‘accounts_contacts_1' =>
array (
"l hs_nmodul e’ => 'Accounts',
"l hs_table' => "accounts',
"l hs_key' =>"id",
"rhs_nodul e’ => 'Contacts',
"rhs_table' => 'contacts',
"rhs_key' =>"'"id",

"rel ati onship_type' =>'many-to-nmany',
"join_table" => 'accounts_contacts_1 c',

"join_key | hs' => "accounts _contacts_laccounts_ida',
"join_key rhs' => '"accounts_contacts_lcontacts_idb',

).
)

"table' => "accounts contacts 1 c',
"fields' =>
array (
0 =>
array (
"nanme' => 'id',
"type' => 'varchar',
"l en' => 36,

).

209 /2.508

1=

array (
"nanme' => 'date_nodified,
"type' => 'datetine',

)
2 =>
array (
‘name’ => 'deleted',
'type' => 'bool",
‘len' =>'1",
‘default' =>"'0",
"required" => true,
)
3 =
array (
"nane'’ => 'accounts_contacts_laccounts_ida',
"type' => 'varchar',
‘len' => 36,
)
4 =>
array (
"nane' => 'accounts_contacts_lcontacts_idb',
"type' => 'varchar',
‘len' => 36,
)
),
"indices' =>
array (
0 =>
array (

‘nane'’ => 'accounts_contacts_1spk',
"type' => 'primry',
‘fields' =>
array (
0 =>"id",
),
)
1 =>
array (
"nane' => 'accounts_contacts_1 idal',
"type' => 'index',
‘fields' =>
array (
0 => "accounts_contacts_laccounts_ida',
)
),

210/2.508

2 =>
array (
‘nane’ => 'accounts_contacts_1 alt"',
"type' => 'alternate_key',
‘fields' =>
array (
0 => "accounts_contacts_1contacts_idb',

),

Defining the Relationship in the TableDictionary

Once a relationship's metadata has been created, the metadata file will have a
reference placed in the TableDictionary:

./ cust om Ext ensi on/ appl i cati on/ Ext/ Tabl eDi cti onary/ <rel ati onshi p name>
. php

This file will contain an ‘include' reference to the metadata file:
<?php
i ncl ude(' cust onl net adat a/ <rel ati onshi p name>Met abDat a. php') ;

?>

TableDictionary Example

The custom 1:M relationship between Accounts and Contacts will yield the
following TableDictionary file:

.Jcustom/Extension/application/Ext/TableDictionary/accounts contacts 1.php
<?php
/I WARNI NG The contents of this file are auto-generated

i ncl ude(' cust oni net adat a/ accounts_cont acts_1Met abat a. php') ;

211/2.508

?>

If you have created the relationship through Studio, the files above will be
automatically created. If you are manually creating the files, run a Quick Repair
and Rebuild and run any SQL scripts generated. The Quick Repair and Rebuild will
rebuild the file map and relationship cache as well as populate the relationship in
the relationships table.

Subpanels

Overview

For Sidecar, Sugar's subpanel layouts have been modified to work as simplified
metadata. This page is an overview of the metadata framework for subpanels.

The reason for this change is that previous versions of Sugar generated the
metadata from various sources such as the SubPanellLayout and MetaDataManager
classes. This eliminates the need for generating and processing the layouts and
allows the metadata to be easily loaded to Sidecar.

Note: Modules running in backward compatibility mode do not use the Sidecar
subpanel layouts as they use the legacy MVC framework.

Hierarchy Diagram

When loading the Sidecar subpanel layouts, the system processes the layout in the
following manner:

212 /2.508

/ N\

‘ Jeustomimodulesiemodule=iclients/=client=layouts/subpanelsisubpanels.php ‘

If nct found, loads

‘ Jmodulesicmodule=fclients/i<client=layouts/subpanelsisubpanels.php ‘

If not found, loads

Jeustomiclients/<client=layouts/subpanel/subpanel.php ‘

|
If not found, loads

‘ Jelients/=client=layouts/subpanel/subpanel.php ‘

. S/

Is appended to the result of

Jeustomimodulesf=module=/Exticlients/baselayoutsisubpanelsisubpanels.ext.php ‘

Files in this directory are compiled into

‘ Jeustiom/Extension/modulesi<module=Extclients/=client=layouts/subpanels/

Note: The Sugar application's client type is "base". For more information on the
various client types, please refer to the User Interface page.

Subpanels and Subpanel Layouts

Sugar contains both a subpanels (plural) layout and a subpanel (singular) layout.
The subpanels layout contains the collection of subpanels, whereas the subpanel
layout renders the actual subpanel widget.

An example of a stock module's subpanels layout is:

./modules/Bugs/clients/base/layouts/subpanels/subpanels.php
<?php

$vi ewdef s[' Bugs'][' base']['layout'][' subpanels'] = array (
' conponents' => array (

array (
'layout' => 'subpanel’,

213/2.508

‘label' => ' LBL_DOCUMENTS SUBPANEL_TI TLE',
‘context' => array (
"link' => "docunents',

),
)
array (
"l ayout' => 'subpanel’,
‘label’ =>"'LBL_CONTACTS SUBPANEL_TI TLE ,
‘context' => array (
"link' => 'contacts',
)
),
array (
"layout' => 'subpanel’,
"label' =>'LBL_ACCOUNTS SUBPANEL TITLE',
‘context' => array (
"link' => "accounts',
),
)
array (
"l ayout' => 'subpanel’,
‘label' =>'LBL_CASES_SUBPANEL_TI TLE',
‘context' => array (
"link' => 'cases',
)
),

)
"type' => 'subpanels',
‘span’ => 12,

),

You can see that the layout incorporates the use of the subpanel layout for each
module. As most of the subpanel data is similar, this approach allows us to use less
duplicate code. The subpanel layout, shown below, shows the three views that
make up the subpanel widgets users see.

.Jclients/base/layouts/subpanel/subpanel.php

<?php
$vi ewdef s[' base']['layout'][' subpanel'] = array (
‘conponents' => array (
array (

'view => 'panel-top',

214 12.508

)

array (
"view => 'subpanel-Ilist’
),
array (
'view => 'list-bottom,
)
),
‘span’ => 12,
"last_state' => array(
"id" => 'subpanel'

),

Adding Subpanel Layouts

When a new relationship is deployed from Studio, the relationship creation process
will generate the layouts using the extension framework. You should note that for
stock relationships and custom deployed relationships, layouts are generated for
both Sidecar and Legacy MVC Subpanel formats. This is done to ensure that any
related modules, whether in Sidecar or Backward Compatibility mode, display a
related subpanel as expected.

Sidecar Layouts

Custom Sidecar layouts, located in
.Jcustom/Extension/modules/<module>/Ext/clients/<client>/layouts/subpanels/,
are compiled into ./custom/modules/<module>/Ext/clients/<client>/layouts/subpan
els/subpanels.ext.php using the extension framework. When a relationship is
saved, layout files are created for both the "base" and "mobile" client types.

For example, deploying a 1:M relationship from Bugs to Leads will generate the
following Sidecar files:

.Jcustom/Extension/modules/Bugs/Ext/clients/base/layouts/subpanels/bugs leads 1
_Bugs.php

<?php

$vi ewdef s[' Bugs'][' base']['layout']["' subpanel s'][' conponents'][] = arr
ay (

"layout' => 'subpanel’,

‘label' => 'LBL_BUGS LEADS 1 FROM LEADS TI TLE',

215/2.508

'context' =>
array (
"link' => "bugs |eads 1',
)
)

.Jcustom/Extension/modules/Bugs/Ext/clients/mobile/layouts/subpanels/bugs leads
1 Bugs.php

<?php

$vi ewdef s[' Bugs']['nmobile']['layout'][' subpanel s'][' conponents'][] = a
rray (

"layout' => 'subpanel’,

‘label' => 'LBL_BUGS_LEADS 1 FROM LEADS TI TLE',

‘context' =>

array (

"link' => "bugs |eads_1',

)

);

Note: The additional legacy MVC layouts generated by a relationships deployment
are described below.

Legacy MVC Subpanel Layouts

Custom Legacy MVC Subpanel layouts, located in
.Jcustom/Extension/modules/<module>/Ext/Layoutdefs/, are compiled into
.Jcustom/modules/<module>/Ext/Layoutdefs/layoutdefs.ext.php using the
extension framework. You should also note that when a relationship is saved,
wireless layouts, located in
.Jcustom/Extension/modules/<module>/Ext/WirelessLayoutdefs/, are created and
compiled into ./custom/modules/<module>/Ext/Layoutdefs/layoutdefs.ext.php.

An example of this is when deploying a 1-M relationship from Bugs to Leads, the
following layoutdef files are generated:

.Jcustom/Extension/modules/Bugs/Ext/Layoutdefs/bugs leads 1 Bugs.php
<?php

$l ayout _def s["Bugs"]["subpanel setup"]['bugs leads _1'] = array (

216 /2.508

"order' => 100,

"modul e => ' Leads',

' subpanel _nanme' => 'default',

'sort_order' => 'asc',

"sort_by' =>"'id",

"title key' =>'LBL_BUGS LEADS 1 FROM LEADS TI TLE',
'get _subpanel data' => 'bugs leads 1',
"top_buttons' =>

array (

0 =>

array (
"wi dget _class' => ' SubPanel TopButt onQui ckCreate',

)

1 =

array (
"wi dget _class' => ' SubPanel TopSel ect Button',
‘nmode’ => "Ml ti Select',

),

.Jcustom/Extension/modules/Bugs/Ext/WirelessLayoutdefs/bugs leads 1 Bugs.php
<?php

$l ayout _def s[" Bugs"] ["subpanel _setup"]['bugs_leads_1'] = array (
‘order' => 100,
"modul e => ' Leads',
' subpanel _nanme' => 'default’,

"title key' =>"'LBL_BUGS LEADS 1 FROM LEADS TI TLE',
'get _subpanel data' => 'bugs leads 1',

Fields Metadata

Sidecar's subpanel field layouts are initially defined by the subpanel list-view
metadata.

Hierarchy Diagram

The subpanel list metadata is loaded in the following manner:

217 /2.508

Joustomimodulesf=module=iclients/=client=views/subpanel-for-<link=/subpanel-for-<link=.php ‘

If nct found, loads

‘ Jmodulesf=module=/clients’=client=views/'subpanel-for-<link=/subpanel-for-<link=.php ‘

If nct found, loads

Joustomimodules/<modulesicliens/<clientviews/subpanel-list'subpanel-lisLphp ‘

If not found, loads

Jmodules/<modulesiclients/<client=views/subpanel-listsubpanel-listphp ‘

If not found, loads

Jeustomiclients/=client=views/subpanelistsubpanel-listphp ‘

If nt found, loads

Jolientsf<client=Niews/subpanel-list'subpanel-listphp ‘

Note: The Sugar application's client type is "base". For more information on the
various client types, please refer to the User Interface page.

Subpanel List Views

By default, all modules come with a default set of subpanel fields for when they are
rendered as a subpanel. An example of this is can be found in the Bugs module:

./modules/Bugs/clients/base/views/subpanel-list/subpanel-list.php
<?php

$subpanel layout['list fields'] = array (

"full _name' =>

array (
"type' => 'fullnane',
"link' => true,
"studio =>
array (

"listview => false,

)
"vnane' => 'LBL_NAM
‘width' => "10%,

218 /2.508

"default' => true,
),
"date_entered =>
array (
"type' => 'datetine',
"studio =>
array (
"portaleditview => false,
)
"readonly' => true,
"vnane' => 'LBL_DATE ENTERED ,
'width' => "'10%,
"default' => true,

),

"refered _by' =>

array (
‘vnane' => 'LBL_LI ST_REFERED BY',
'width' => "'10%,
"default' => true,

),

"l ead_source' =>

array (
‘vnane' => 'LBL_LI ST _LEAD SOURCE,
'width' => "'10%,
"default' => true,

),

' phone_wor k' =>

array (
‘vnane' => 'LBL_LI ST_PHONE',
'width' => "'10%,
"default' => true,

),

'l ead_source_description' =>

array (
"nanme' => '|ead_source_description',
"vhane' => 'LBL_LI ST _LEAD SOURCE DESCRI PTI ON
'width' => "10%,
"sortabl e’ => fal se,
"default' => true,

),

'assi gned_user _nane' =>

array (

"nanme' => 'assigned _user_nane',

"vhane' => 'LBL_LIST_ASSI GNED TO NAME',

"w dget _class' => 'SubPanel Det ai | Vi ewLi nk' ,
"target _record_key' => 'assigned user _id",

219/2.508

"target _nodule' => 'Enpl oyees',
"width' => "10%,
"default' => true,
),
"first_name' =>
array (
‘usage' => 'query_only",
),
"l ast _nanme' =>
array (
‘usage' => 'query_only",
),
"salutation' =>
array (
"nanme' => 'salutation',
‘usage' => 'query_only",
)
)

To modify this layout, navigate to Admin > Studio > {Parent Module} > Subpanels
> Bugs and make your changes. Once saved, Sugar will generate ./custom/modules
/Bugs/clients/<client>/views/subpanel-for-<link>/subpanel-for-<link>.php which
will be used for rendering the fields you selected.

You should note that, just as Sugar mimics the Sidecar layouts in the legacy MVC
framework for modules in backward compatibility, it also mimics the field list in
./modules/<module>/metadata/subpanels/default.php and
.Jcustom/modules/<module>/metadata/subpanels/default.php. This is done to
ensure that any related modules, whether in Sidecar or Backward Compatibility
mode, display the same field list as expected.

Database

Overview

All Sugar products support the MySQL and Microsoft SQL Server databases. Sugar
Enterprise and Sugar Ultimate also support the DB2 and Oracle databases. In
general, Sugar uses only common database functionality, and the application logic
is embedded in the PHP code. Sugar does not use or recommend database triggers
or stored procedures. This design simplifies coding and testing across different
database vendors. The only implementation difference across the various
supported databases is column types.

220/2.508

Primary Keys, Foreign Keys, and GUIDs

By default, Sugar uses globally unique identification values (GUIDs) for primary
keys for all database records. Sugar provides a
Sugarcrm\Sugarcrm\Util\Uuid::uuid1() utility function for creating these GUIDs in
the following format: aaaaaaaa-bbbb-cccc-dddd-eeeeeeeeeeee. The primary key's
column length is 36 characters.

The GUID format and value has no special meaning (relevance) in Sugar other
than the ability to match records in the database. Sugar links two records (such as
an Accounts record with a Contacts record) with a specified ID in the record type
relationship table (e.g. accounts contacts).

Primary keys in Sugar may contain any unique string such as a GUID algorithm, a
key that has some meaning (e.g. bean type first, followed by info), an external key,
or auto-incrementing numbers converted to strings. Sugar chose GUIDs over auto-
incrementing keys to enable easier data synchronization across databases and
avoid primary-key collisions.

You can also import data from a previous system with one primary key format and
make all new records in Sugar use the GUID primary key format. All keys must be
stored as globally unique strings with no more than 36 characters.

Notice If multiple records between modules contain matching ids, you may
experience undesired behaviors within the system.

To implement a new primary key method or to import data with a different primary
key format (based on the existing GUID mechanism for new records), keep in
mind the following rules of primary key behavior:

* Quote characters : Sugar expects primary keys to be string types and will
format the SQL with quotes. If you change the primary key types to an
integer type, SQL errors may occur since Sugar stores all ID values in
quotes in the generated SQL. The database may be able to ignore this
issue. MySQL running in Safe mode experiences issues, for instance.

e Case sensitivity : The ID values abc and ABC are treated the same in
MySQL but represent different values in Oracle. When migrating data to
Sugar, some CRM systems may use case-sensitive strings as their IDs on
export. If this is the case, and you are running MySQL, you must run an
algorithm on the data to make sure all of the IDs are unique. One simple
algorithm is to MD5 the ID values that they provide. A quick check will let
you know if there is a problem. If you imported 80,000 leads and there are
only 60,000 in the system, some may have been lost due to non-unique
primary keys caused by case insensitivity.

221/2.508

e Key size : Sugar only tracks the first 36 characters in the primary key. Any
replacement primary key will either require changing all of the ID columns
with one of an appropriate size or to make sure you do not run into any
truncation or padding issues. MySQL in some versions has had issues with
Sugar where the IDs were not matching because it was adding spaces to
pad the row out to the full size. MySQL's handling of char and varchar
padding has changed in later versions. To protect against this, make sure
the GUIDs are not padded with blanks in the database by removing any
leading or trailing space characters.

Indexes

Indexes can be defined in the main or custom vardefs.php for a module in an array
under the key indices. See below for an example of defining several indices:

"indices' => array(

array(
"nanme' => 'idx_nodul enane_nane',
"type' => "index',
"fields' => array(' nane'),
),
array(
"nane' => 'idx_nodul enane_assi gned_del eted',
"type' => 'index',
"fields' => array('assigned_user_id , 'deleted),

),

The name of the index must start with idx and must be unique across the
database. Possible values for type include primary for a primary key or index for a
normal index. The fields list matches the column names used in the database.

Doctrine

In order to provide robust support for Prepared Statements, which provide more
security and better database access performance, Sugar 7.9 has adopted parts
of Doctrine's Database Abstraction Layer, especially the QueryBuilder class, for

working with prepared statements. The picture below shows how Sugar objects
like DBManager and SugarQuery utilize Doctrine to provide this functionality,
while still using the same toolset that has existed in Sugar 7.

222 12.508

https://en.wikipedia.org/wiki/Prepared_statement
http://docs.doctrine-project.org/projects/doctrine-dbal/en/latest/index.html
http://docs.doctrine-project.org/projects/doctrine-dbal/en/latest/reference/query-builder.html

Your Code #1 Your Code #2 Your Code #3

1
] inseriParams()

selecl) updateParams() save()

SugarQuery DBManager SugarBean

insert(), update()

]

sakect()

save()

inseri(), updats{) insartParams(), update Params()]

DactrinevQueryBullder Dynamil cFleld
I Your Code #4

sehzcl), insert(), update()

F
Doctrine\Connection

Your Code #5

executeCuerny(), executellpdate()

DBManager

The DBManager class will use Doctrine QueryBuilder for building INSERT and
UPDATE queries.

SugarQuery

The SugarQuery class will use Doctrine QueryBuilder for building SELECT
queries.

SugarBean

The SugarBean class will continue to use DBManager class for saving all fields.

DBManager

Overview

The DBManager Object provides an interface for working with the database. As of
Sugar 7.9, there are some deprecated methods that have been removed from the

223/2.508

system that are outlined in the Release Notes.

Instantiating the DBManager Object

The DBManagerFactory class, located in
Jinclude/database/DBManagerFactory.php, can help instantiate a DBManager
object using the getInstance() method.

$db = \ DBManager Factory: : getl nstance();

For best practices, we recommend using the global DBManager Object:

$GLOBALS[' db']

Querying The Database

As of Sugar 7.9, there is support for prepared statements. The following sections
outline the legacy usage and the new prepared statement usage.

SELECT queries

For select queries that do not have a dynamic portion of the where clause, you can
use the query() method on the DBManager object. For queries that are accepting
data passed into the system in the where clause, the following examples
demonstrate how best utilize the new Prepared Statement functionality.

Legacy:

$id = ' 1234- abcde-f gh45- 6789 ;
$query = ' SELECT * FROM accounts WHERE id ="' . $G.OBALS[' db']->quoted
($id);

$results = $GOBALS[' db']->query($query);

Best Practice:

Use the getConnection() method to retrieve a Doctrine Connection Object which
handles prepared statements.

$id = ' 1234- abcde-f gh45- 6789 ;
$query = ' SELECT * FROM accounts WHERE id = ?';

224 12.508

$conn
$st mt

$GLOBALS[' db'] - >get Connection();
$conn- >execut eQuery($query, array($id));

In the case that query logic is variable or conditionally built then it makes sense to
use Doctrine QueryBuilder directly.

Legacy:
$query = ' SELECT * FROM accounts';
if ($status !'== null) {
$query .= "' WHERE status ="' . $CGLOBALS[' db']->quot ed($st at us);
}

$results = $GOBALS[' db']->query($query);

Best Practice:

Use the getConnection() method to retrieve the Doctrine Connection Object, and
then use the createQueryBuilder() method on the Connection Object to retrieve the
QueryBuilder Object.

$bui | der = $G.OBALS[' db'] - >get Connecti on()->creat eQueryBui |l der ();
$bui | der->sel ect (' *')->fronm(' accounts');

if ($status !'== null) {

$bui | der->where(' status = ' . $buil der->creat ePosi ti onal Par anet er ($st
atus)));
}

$stnt = $buil der->execute();

Retrieving Results

Legacy:

After using the query() method, such as in the Legacy code examples above, you
can use the fetchByAssoc() method to retrieve results. The query() method will
submit the query and retrieve the results while the fetchByAssoc() method will
iterate through the results:

$sql = "SELECT id FROM accounts WHERE del eted = 0";
$result = $GLOBALS[' db']->query($sql);

whil e($row = $AOBALS[' db'] - >f et chByAssoc($result))

225/2.508

//Use $rowf'id'] to grab the id fields val ue
$id = $ronf'id];

Best Practice:

When using Prepared Statements, both the Doctrine Query Builder and the
Doctrine Connection Object will return a Doctrine\DBAL\Portability\Statement
Object to allow iterating through the results of the query. You can use the fetch()
or fetchAll() methods to retrieve results.

fetchAll() Example

The fetchAll() method will return the entire result set as an array, with each index
containing a row of data.

$id = '1234-abcde-fgh45-6789';

$query = ' SELECT * FROM accounts WHERE id = ?';
$conn = $G.OBALY[' db'] - >get Connecti on();
$stmt = $conn->execut eQuery($query, array($id));
foreach($stnmt->fetchAll () as $row{

$id = $ronf'id]

/1 do other stuff...
}

fetch() Example
The fetch() method will return the next index in the result set.

$id = '1234- abcde-f gh45- 6789 ;

$query = ' SELECT * FROM accounts WHERE id = ?';
$conn = $GE.OBALS[' db'] ->get Connection();
$stnt = $conn->execut eQuery($query, array($id));
whil e($row = $stnt->fetch()){

$id = $ronf'id]

//do other stuff...
}

Retrieving a Single Result

226 /2.508

To retrieve a single result from the database, such as a specific record field, you
can use the getOne() method for Legacy query usage.

$sql = "SELECT nane FROM accounts WHERE id = '{$id}"'";
$nane = $GA.OBALS[' db'] ->get One($sql);

Limiting Results

To limit the results of a query, you can add a limit to the SQL string or for legacy
query usage you can use the limitQuery() method on the DBManager Object:

Legacy:

$sql = "SELECT id FROM accounts WHERE del eted = 0";
$of fset = O;
$limt = 1;

$result = $SAOBALS['db']->limtQuery($sqgl, $offset, $limt);

whil e($row = $G.OBALS[' db'] - >f et chByAssoc($result))

{
/lUse $rowf'id'] to grab the id fields val ue

$id = $ronf'id];

Prepared Statements:

When using the Doctrine Query Builder, you can limit the results of the query by
using the setMaxResults() method.

$bui | der = $G.OBALS[' db'] - >get Connecti on()->creat eQueryBui |l der ();
$bui | der->sel ect (' *")->fron(' accounts');

if ($status !'== null) {

$bui | der->where(' status = ' . $buil der->creat ePosi ti onal Par anet er ($st
atus)));
}

$bui | der - >set MaxResul t s(2);
$stmt = $buil der->execute();

INSERT queries

227 12.508

INSERT queries can be easily performed using DBManager class.
Legacy:

$query = "INSERT I NTO table (foo, bar) VALUES ("foo", "bar")';
$A.OBALY[' db'] ->query($query);

Best Practice:

$fiel dDefs = $GALOBALS['dictionary']['table']['fields'];
$GOBALS['db']->i nsertParans('table', $fieldDefs, array('foo’" => 'foo
,"bar' => "bar'));

UPDATE queries

When updating records with known IDs or a set of records with simple filtering
criteria, then DBManager can be used:

Legacy:

$query = ' UPDATE table SET foo = "bar" WHERE id ="' . $G.OBALS[' db']
->quot ed($i d);
$GLOBALS[' db'] - >quer y($query);

Best Practice:

$fiel dDefs = $CGLOBALS[' dictionary']['table J['fields'];
$A.OBALS[' db'] ->updat eParans('table', $fieldDefs, array('foo' => "bar'
,), array('id => $id));

For more complex criteria or when column values contain expressions or
references to other fields in the table then Doctrine QueryBuilder can be used.

Legacy:
$query = ' UPDATE table SET foo = "bar" WHERE foo = "foo" OR foo IS N

ULL';
$CGLOBALS[' db'] - >execut e($query);

22812.508

Best Practice:

$query = ' UPDATE table SET foo = ? WHERE foo = ? OR foo IS NULL';
$conn = $G.OBALY[' db'] - >get Connecti on();
$st nt $conn- >execut eQuery($query, array('bar', 'foo'));

Generating SQL Queries from SugarBean

To have Sugar automatically generate SQL queries, you can use the
following methods from the bean class.

Select Queries
To create a select query you can use the create new list query() method:
$bean = BeanFactory: : newBean($nodul e);
$order _by ="'";
$where = "'
$fields = array(
“id,
"nane'

)

$sql = $bean->create_new |ist_query($order_ by, 3$where, $fields);

Count Queries

You can also run the generated SQL through the create list count query() method
to generate a count query:

$bean = BeanFactory:: newBean(' Accounts');

$sql = "SELECT * FROM accounts WHERE del eted = 0";
$count _sql = $bean->create_list_count _query($sql);
SugarQuery

Overview

229/2.508

SugarQuery, located in ./include/SugarQuery/SugarQuery.php, provides an object-
oriented approach to working with the database. This allows developers to
generate the applicable SQL for a Sugar system without having to know which
database backend the instance is using. SugarQuery supports all databases
supported by Sugar.

Note: SugarQuery only supports reading data from the database at this time (i.e.
SELECT statements).

Setup
To use SugarQuery, simply create a new SugarQuery object.

$sugar Query = new Sugar Query();

Basic Usage

Using the SugarQuery object to retrieve records or generate SQL queries is very
simple. At a minimum you need to set the Module you are working with, using the
from() method, however, there are helper methods for just about any operation you
would need in a SQL query. The methods listed below will outline the major
methods you should consider utilizing on the SugarQuery object in order to
achieve your development goals.

from()

The from() method is used to set the primary module the SugarQuery object will be
querying from. It is also used to set some crucial options for the query, such as
whether Team Security should be used or if only non-deleted records should be
queried. The following example will set the SugarQuery object to query from the
Accounts module.

$sugar Quer y- >f r om(BeanFact ory: : newBean(' Accounts'));

Arguments
Name Type Required Description
$bean SugarBean Object |true The SugarBean

object for
a specified module.
The SugarBean

230/2.508

object does not
have to be a blank
or new Bean as
seen in the example
above, but can be a
previously
instantiated
SugarBean object.

$options

Array

false

An associative
array that can
specify any of the
following options:

o alias -
string - The
alias for the
module
table in the
generated
SQL query

e team_secu
rity
- boolean -
Whether or
not Team
Security
should be
added to
the
generated
SQL query

* add_delete
d - boolean -
Whether or
not 'deleted’
= 0 should
be added to
Where
clause of
generated

SQL query

Returns

SugarQuery Object

231/2.508

Allows for method chaining on the SugarQuery object.

select()

The example above demonstrates the most basic example of retrieving records
from a module. The select() method can be used on the SugarQuery object to
specify the specific fields you wish to retrieve from the query.

[/ Alter the Sel ected Fields

$sugar Query->sel ect(array('id , 'nane'));

Arguments

Name Type Required Description

$fields Array false Sets the fields that
should be added to
the SELECT
portion of the SQL
query

Returns

SugarQuery Builder Select Object

You cannot chain SugarQuery methods off of the select() method, however, you
can use the returned Select object to modify the SELECT portion of the statement.
Review the SugarQuery Builder Select object in
Jinclude/SugarQuery/Builder/Select.php for additional information on usage.

where()

To add a WHERE clause to the query, use the where() method to generate the
Where object, and then use method chaining with the various helper methods to
add conditions. To add a WHERE clause for records with the name field
containing the letter "I", you could add the following code.

[/ add the where cl ause
$sugar Query- >where() - >contai ns(' nane', 'I"');

Arguments

None

232/2.508

Returns

SugarQuery Builder Where Object

Allows for method chaining on the Where object as shown above. Review the

SugarQuery Conditions documentation for a full spectrum of where() method

usage.

Relationships

join()

To add data from a related module to the SugarQuery, use the join() method.
Adding to the same SugarQuery code example in this page, the following code
would add the JOIN from Accounts module tables to Contacts table:

/ladd join

$sugar Query->j oi n(' contacts');

Arguments

Name Type Required Description

$link name String true The name of the
relationship

$options Array false

An associative
array that can
specify any of the
following options:

e alias -
string - The
alias for the
module
table in the
generated
SQL query

e relatedJoin
- string - If
joining to a
secondary
table

233/2.508

(related to a
related
module),
such as
joining on O
pportunities
related to
Contacts,
when
querying
from
Accounts,
you can
specify
either the
name of the
relationship
or the alias
you
specified for
that
relationship
table.

Returns

SugarQuery Builder Join Object

Allows for method chaining on the SugarQuery Builder Join Object, to add
additional conditions to the WHERE clause of the SQL condition.

joinTable()

If you were using the joinRaw() method in previous versions of Sugar, this is the
replacement method which allows for joining to a related table in SugarQuery.
Adding to the same SugarQuery code example in this page, the following code
would add the JOIN from Accounts module tables to the accounts contacts table:

//add join

$sugar Query->j oi nTabl e(' accounts_contacts',

n()

array('alias'

->equal sFi el d('accounts.id',"'ac.account _id")

->equal s('ac. primary_account',1);

=> 'ac'))->o0

234 /2.508

Arguments

Name Type Required Description

$table name String true The name of the
database table to
join.

$options Array false

An associative
array that can
specify any of the
following options:

¢ alias -
string - The
alias for the
module
table in the
generated

SQL query

Returns
SugarQuery Builder Join Object

Allows for method chaining on the SugarQuery Builder Join Object, to add
additional conditions to the ON clause using the on() method.

Altering Results
Altering the result set of a query can help the performance, as well as be crucial to

finding the correct data. The following methods provide ways to limit the result set
and change the order.

distinct()

To group the query on a field, you can use the corresponding distinct() method.

[l add group by
$sugar Query->di stinct(true);

Arguments

Name Type Required Description

235/2.508

$value Boolean true Set whether or not
the DISTINCT
statement should
be added to the

query

Returns

Current SugarQuery Object

Allows for method chaining on the SugarQuery Object.

limit()

To limit the results of the query, you can use the limit() method.

//set the limt
$sugar Query->limt (10);

Arguments

Name Type Required Description

$number Integer true The max amount of
rows that should be
returned by the
query

Returns

Current SugarQuery Object

Allows for method chaining on the SugarQuery Object.

offset()

Adding a limit to the query limits the rows returned, however when doing so, you
may need to alter the offset of the query to account for pagination or access other
portions of the result set. To set an offset, you can use the offset() method.

//set the offset
$sugar Quer y->of f set (5);

236/2.508

Arguments

Name Type Required Description

$number Integer true The offset amount
of rows, or starting
point, of the result

Returns
Current SugarQuery Object

Allows for method chaining on the SugarQuery Object.
orderBy()

To order the query on a field, you can use the corresponding orderBy() method.
This method can be called multiple times, to add multiple fields to the order by
clause of the query.

[/ add group by
$sugar Query- >or der By(' account _type');

Arguments

Name Type Required Description

$column String true The field you want
the query to be
grouped on

$direction String false Sets the direction
of sorting. Must be
'ASC' or 'DESC'.
The default is
'DESC'.

Returns

Current SugarQuery Object

Allows for method chaining on the SugarQuery Object.

Execution

Once you have the SugarQuery object setup and configured for your statement,

23712.508

you will want to retrieve the results of the query, or simply get the generated
query for the object. The following methods are used for executing the SugarQuery
object.

execute()

To query the database for a result set, you will use the execute() method. The
execute() method will retrieve the results and return them as a raw string, db
object, json, or an array depending on the $type parameter. By default, results are
returned as an array. An example of fetching records from an account is below:

[/ fetch the result
$result = $sugar Query- >execut e();

The execute() function will return an array of results that you can iterate through
as shown below:

Array
(
[0] => Array

[id] => f39593da- 3f 88- 3059- 4f 18- 524b4d23d07b
[nanme] => International Art Inc

Note: An empty resultset will return an empty array.

Arguments
Name Type Required Description
$type String false How you want the

results of the Query
returned. Can be
one of the following
options:

e db -
Returns the
result
directly

238/2.508

from the Da
tabaseMana
ger
resource
array

- Default -
Returns the
results as a
formatted
array
json -
Returns the
results
encoded as
JSON

Returns

Default: Array. See above argument details for details on other Return options.

compile()

If you want to log the query being generated or want to output the query without
running it during development, the compile() method is what should be used
retrieve the Prepared Statement. You can then retrieve the Prepared Statement
Object to retrieve the Parameterized SQL and the Parameters. For further
information on Prepared Statement usage, see our Database documentation.

/1 get the conpil ed prepared statenent

$preparedStnt = $sugar Query->conpil e();

/Il Retrieve the Paraneterized SQ
$sqgl = $preparedStnt - >get SQL() ;

// Retrieve the paranmeters as an array
$par aneters = 3$preparedSt nt - >get Par anet ers() ;

Arguments

No arguments

Returns

Object

239/2.508

The compiled SQL Query built by the SugarQuery object.

SugarQuery Conditions

Overview

Learn about the various methods that can be utilized with SugarQuery to add
conditional statements to a query.

Where Clause

Manipulating, the WHERE clause of a SugarQuery object is crucial for getting the
correct results. To create a WHERE clause on the query, use the where() method
on the SugarQuery object, as outlined in the SugarQuery documentation. Once you
have the Where object, you can utilize the following methods on the Where object
to add conditional statements.

equals() | notEquals()

Used to equate a field to a given value. Wildcards will not work with this function,
as it is looking for an exact match.

/1 add equal s
$Sugar Quer y- >wher e() - >equal s(' nane', ' Test');

//add Not Equal s
$Sugar Quer y- >wher e() - >not Equal s(' nane', ' Tester');

Arguments

Name Type Required Description

$field String true The field you are
checking against

$value String true The value the field
should be equal to

Returns

SugarQuery Builder Where Object

Allows for method chaining on the Where object to add additional conditions.

240/ 2.508

equalsField() | notEqualsField()
Used to equate a field to another field in the result set.

//add an Equal s Field statenent

$Sugar Quer y- >wher e() - >equal sFi el d(' i ndustry',"'account type');

//add a Not Equals Field statenent

$Sugar Quer y- >wher e() - >not Equal sFi el d(' nane', "' account _type');

Arguments

Name Type Required Description

$field String true The field you are
checking against

$field String true The other field you
want the first field
to be equal to

Returns

SugarQuery Builder Where Object

Allows for method chaining on the Where object to add additional conditions.

isEmpty() | isNotEmpty()
Used to check if a field is or isn't empty.

//add an i sEnpty statenent

$Sugar Quer y- >where() ->i sEnpty(' i ndustry');

[/ add an isNot Enpty st at enent

$Sugar Quer y- >wher e() - >i sNot Enpty(' nane');

Arguments

Name Type Required Description

$field String true The field you are
checking against

Returns

2411/2.508

SugarQuery Builder Where Object

Allows for method chaining on the Where object to add additional conditions.

isNull() | notNull()
Used to check if a field is or isn't equal to NULL.

//add an isNull statenent
$Sugar Quer y- >wher e() - >i sNul | (* i ndustry');

//add a not Null statement
$Sugar Quer y->where()->not Nul | (' nane');

Arguments

Name Type Required Description

$field String true The field you are
checking against

Returns

SugarQuery Builder Where Object
Allows for method chaining on the Where object to add additional conditions.
contains() | notContains()

Used to check if a field has or doesn't have a specified string in its value. Utilizes
the LIKE statement, and wildcards on both sides of the provided string.

//add an isNull statenent
$Sugar Query- >where()->contai ns(' nane',"' Test');

//add a notNull statenent
$Sugar Quer y- >wher e() - >not Cont ai ns(' i ndustry',"' Test');

Arguments

Name Type Required Description

$field String true The field you are
checking against

242 12.508

$value String true The string being
searched for in the
value of the field

Returns
SugarQuery Builder Where Object
Allows for method chaining on the Where Object to add additional conditions.

starts() | ends()

Similar to the above contains() method, these methods use the LIKE statement in
the SQL query and wildcards for searching for a specified string in the field's
value. However, the starts() and ends() methods only wildcard the right side and
the left side, respectively. The following example demonstrates searching for
records where the Name field starts with A, and ends with E.

//add an starts and ends st at enment
$Sugar Query->where()->starts(' nane',' A')->ends(' nane',"'e');

Arguments

Name Type Required Description

$field String true The field you are
checking against

$value String true The string being
searched for in the
value of the field

Returns

SugarQuery Builder Where Object

Allows for method chaining on the Where object to add additional conditions.
in() | notIn()

Used to check if a field's value is or isn't one of a set of specified values. The
following examples look for records where the industry field is in a list of values,
and not in a separate list of values.

$val ues = array(
" Support',

24312.508

' Sal es',
" Engi neeri ng’

)

//add in statenent
$Sugar Query->where()->i n('industry', $val ues);

$val ues = array(
" Marketing',
" Account i ng'

)

//add Notln Statenent
$Sugar Query->where()->not I n('industry', $val ues);

Arguments

Name Type Required Description

$field String true The field you are
checking

$values Array true The array of values
which the field is
being checked
against

Returns

SugarQuery Builder Where Object
Allows for method chaining on the Where object to add additional conditions.
between()
Used primarily for numeric type fields, to check if the value is greater than the
minimum number specified and less than the maximum number specified. The
following code would check for records where the employees field is between 50

and 1000.

/ / add Bet ween st at enent
$Sugar Quer y- >wher e() - >bet ween(' enpl oyees', 50, 1000) ;

Arguments

244 12.508

Name Type Required Description

$field String true The field you are
checking against

$min Number true The lowest number
the field's value
should be

$max Number true The highest

number the field's
value should be

Returns
SugarQuery Builder Where Object

Allows for method chaining on the Where object to add additional conditions.

1t | 1te() | gt(| gte()

These methods are primarily for numeric fields, to check if a field's value is less
than (<), less than or equal (<=), greater than (>), or greater than or equal (>=)
to a specified value.

/1 Add Less Than St at enent
$Sugar Query->where()->lt(' gross_revenue', 1000000);

/1 Add Less Than or Equal to Statenent
$Sugar Query->where()->lte(' net _revenue','500000');

/1 Add Greater Than Statenent
$Sugar Query- >where()->gt (' gross_revenue', 500000);

/1 Add G eater Than or Equal to Statenent
$Sugar Quer y->where()->gte(' net _revenue', 100000);

Arguments

Name Type Required Description

$field String true The field you are
checking against

$value Number true The numeric value
for comparison

Returns

245/2.508

SugarQuery Builder Where Object

Allows for method chaining on the Where object to add additional conditions.

dateRange()

Used to check if a field's value is between a preset date range from the current
time. See the TimeDate documentation on the available date range keys.

/| add Dat eRange st at enent

$Sugar Quer y- >wher e() - >dat eRange(' date_nodi fied','|ast_30_days');

Arguments

Name Type Required Description

$field String true The field you are
checking against

$value String true The
string specifying
the date range key
that will be used
for comparison. Ex
ample 'next 7 days'

Returns

SugarQuery Builder Where Object

Allows for method chaining on the Where object to add additional conditions.

dateBetween()

To group the query on a field, you can use the corresponding groupBy() method.
This method can be called multiple times, to add multiple fields to the grouping of

the query.

[/ add group by
$Sugar Quer y- >wher e() - >dat eBet ween(' date_created' ,array(' 2016-01-01',"'2

016-03-01'));

Arguments

246/ 2.508

Name Type Required Description

$field String true The field you are
checking against

$value Array true An array containing
the minimum date
in the first key, and
the maximum date
in the second.

Returns
SugarQuery Builder Where Object

Allows for method chaining on the Where Object to add additional conditions.

Combinations

Now that you have reviewed all of the available conditional statements for
SugarQuery, you may want to combine them using AND and OR all within the
same query. By default when the where() method is called, chained conditional
methods will be added with AND to the where clause. You can specify an OR where
clause on the main SugarQuery object by using the orWhere() method, which
works the same as the where() method, just adds conditional statements with OR
instead. The following methods allow for adding internal AND and OR logic to
conditional statements on the Where object.

queryAnd()

To start a group of conditional statements that should all evaluate to True, use the
queryAnd() method. For example, if you want to query for Accounts, where the
name contains 'Test' AND description contains 'Test', you might use the following
code:

$Sugar Query = new Sugar Query();
$Sugar Query->sel ect (array(' nane'));
$Sugar Quer y- >f rom(BeanFact ory: : newBean(' Accounts'));

/1 Usi ng quer yAnd
$Sugar Quer y- >wher e() - >quer yAnd() - >cont ai ns(' nane', "' Test')->contains('d
escription', Test');

The above use of queryAnd() method isn't entirely needed, as the main Where
object would be using AND for all conditions anyway, but it does group the two

247 12.508

conditions inside of their own parenthesis in the compiled query, as shown below,
to demonstrate how it can be used for altering query logic.

SELECT accounts. name nane FROM accounts WHERE accounts.deleted = 0 AN
D (accounts. name LIKE ' % est% AND accounts. description LIKE '%lest%)

queryOr()

To start a group of conditional statements that should evaluate to true, if any
condition is true, you can use the queryOr() method. For example, if you want to
query for Accounts, where the name contains 'Test' or where the description
contains 'Test', you might use the following code:

$Sugar Query = new Sugar Query();
$Sugar Query->sel ect (array(' nane'));
$Sugar Quer y- >f rom(BeanFact ory: : newBean(' Accounts'));

/1 Usi ng queryOr
$Sugar Quer y- >where()->queryOr () ->contai ns(' nanme',"' Test')->contai ns('de
scription',' Test');

This will group the two conditions inside of their own parenthesis in the compiled
query. If either of the conditions is True, it will return a record. An example is
shown below.

SELECT accounts. nane nanme FROM accounts WHERE accounts. deleted = 0 AN
D (accounts. name LIKE '%est% OR accounts. description LIKE '%est%)

Advanced Techniques

Overview

Learn about some of the advanced methods that SugarQuery has to offer, that are
not as commonly used.

Get First Record

Getting the first record in a result set, can be accomplished by using the limit()
method. The getOne() method is similar in that it gets the first record, but it also
returns the first piece of data for that record.

248 12.508

getOne()

Get the first piece of data on the first record returned by the generated query. In
this example, we want the 'name' from the Account with a given ID.

$Sugar Query = new Sugar Query();

$Sugar Query- >sel ect (array(' nane'));

$Sugar Quer y- >f r om(BeanFact ory: : newBean(' Accounts'));
$Sugar Quer y- >where() - >equal s('id', $id);

/1 Get the Nane of the account
$account Nane = $Sugar Query- >get One();

Aggregates
setCountQuery()

Currently, the only method available for creating an aggregate column, is the
setCountQuery() method on the SugarQuery Builder Select Object. You can add
this method to your select() method chain, to add count(0) as record count to the
SQL SELECT statement.

$Sugar Query = new Sugar Query();

$Sugar Query->sel ect (array(' nane')) - >set Count Query();
$Sugar Quer y- >f r om(BeanFact ory: : newBean(' Accounts'));
$Sugar Quer y- >gr oupByRaw(' account s. nane') ;

The above example will output the following prepared statement when using

compile():

SELECT accounts. nane, COUNT(0) AS record_count FROM accounts WHERE acc
ounts. del eted = ? GROUP BY accounts. nane, accounts. nane

Parameters
array (
[1] => 0

)

249/ 2.508

Arguments
No arguments
Returns
SugarQuery Builder Select Object

Allows for method chaining on the Select Object.
Joins

Joining to tables and joining via SugarBean relationships is outlined in the
SugarQuery documentation, however the SugarQuery Builder Join Object has a
few helpful methods not mentioned there.

joinName()

If you are not using a custom alias for the relationship or table, you may want to
retrieve the generated name used by SugarQuery to add a conditions or join to.

$Sugar Query = new Sugar Query();

$Sugar Quer y- >f rom(BeanFact ory: : get Bean(' Accounts'));
$contacts = $Sugar Query->j oi n(' contacts')->j oi nName() ;
$Sugar Query->sel ect (array("$contacts. full _name"));
$Sugar Quer y- >wher e() - >equal s('industry', 'Media');

The above example will output the following prepared statement when using

compile():

SELECT jt0O _contacts.salutation rel _full _name_salutation, jtO_contacts.
first_nane rel _full _name first _name, jtO _contacts.last _nane rel full _n
ane_| ast_name FROM accounts I NNER JO N accounts_contacts jt1l accounts_

contacts ON (accounts.id = jtl accounts_contacts.account _id) AND (jt1_
accounts_contacts.deleted = ?) INNER JON contacts jtO_contacts ON (jt
O contacts.id = jtl accounts_contacts.contact _id) AND (jtO_contacts. de

|l eted = ?) WHERE (accounts.industry = ?) AND (accounts.deleted = ?)

Parameters:

array (

250/2.508

[1] => 0

[2] =>0
[3] => Media
[4] => 0

)

Arguments

No arguments
Returns
string
The name used in Query to identify the joined table

Unions

Unions allow joining multiple queries with the same selected fields to be combined
during output. You can use Unions in SugarQuery by using the union() method.

union()

To add a union, you can use the corresponding union() method. The example below
will join two SQL queries:

/I Fetch the bean of the nodule to query
$bean = BeanFactory::newBean(' Accounts');

/1 Specify fields to fetch
$fields = array(

id',

" nane'

)

/[l Create first query

$sql = new Sugar Query();

$sql- >sel ect ($fi el ds);

$sqgl- >from($bean, array('team security' => false));
$sql- >Where()->in(' account _type', array(' Custoner'));

251/2.508

[/ Create second query

$sg2 = new Sugar Query();

$sq2- >sel ect ($fi el ds);

$sq2->from($bean, array('teamsecurity' => false));
$sq2- >Where()->in(' account _type', array('lInvestor'));

/1 Create union

$sqUni on = new Sugar Query();
$sgUni on->uni on($sql);
$sqUni on- >uni on($sg2) ;

$sqUni on->limt(5);

The above example will output the following prepared statement when using

compile():

SELECT accounts.id, accounts.nanme FROM accounts WHERE (accounts. accoun

t_type IN (?)) AND (accounts.deleted = ?) UNION ALL SELECT accounts.id
, accounts. nane FROM accounts WHERE (accounts. account _type IN (?)) AND
(accounts.deleted = ?) LIMT 5

Parameters:
array (
[1] => Custoner
[2] => 0
[3] => Investor
[4] => 0
)
Arguments
Name Type Required Description
$select SugarQuery true The SugarQuery
Object you wish to
add to the UNION
query
$all Boolean false Whether to use
UNION ALL or just
UNION in the
query. The default

252 /2.508

| value is TRUE.

Returns
SugarQuery Builder Union Object

Allows for method chaining on the Union Object.
Having

When using aggregates in a query, you might want to filter out values based on a
condition. SugarQuery provides the having() method for adding HAVING clause to
the query.

having()

To use the having() method, you have to build a SugarQuery Builder Condition
Object and set the field, operator, and value that condition is based on.

$Sugar Query = new Sugar Query();

$Sugar Quer y- >f r om(BeanFact ory: : get Bean(' Accounts'));

$Sugar Query->join('contacts', array('alias' => '"industryContacts'));
$Sugar Query->joi n(' opportunities', array('relatedJoin' => "industryCon
tacts', 'alias' => 'contactsCpportunities'));

$Sugar Quer y- >sel ect () - >set Count Query();

$Sugar Quer y- >wher e() - >equal s(' contact sOCpportunities.sales_stage', 'clo
sed');

$havi ngCondi ti on = new Sugar Query_Bui | der _Condi ti on($Sugar Query);

$havi ngCondi ti on->set Fi el d(' contact sCpportuni ties. anmount')->set Operato
r('>")->setVal ues('1000');

$Sugar Quer y- >havi ng($havi ngCondi ti on);

The above example will output the following prepared statement when using

compile():

SELECT COUNT(0) AS record_count FROM accounts I NNER JO N accounts_cont
acts jt0_accounts _contacts ON (accounts.id = jt0 _accounts_contacts. acc
ount _id) AND (jtO_accounts_contacts.deleted = ?) INNER JO N contacts i
ndustryContacts ON (industryContacts.id = jtO_accounts_contacts. contac
t _id) AND (industryContacts.deleted = ?) INNER JO N opportunities_cont
acts jtl opportunities contacts ON jtl opportunities_contacts. del eted

= ? INNER JO N opportunities contactsQpportunities ON (contactsOpportu
nities.id = jtl opportunities_contacts.opportunity id) AND (contactsQp
portunities.deleted = ?) WHERE (contactsOpportunities.sales_stage = ?)

253/2.508

AND (accounts.deleted = ?) HAVI NG contact sCpportunities.anount > ?

Parameters:
array (
[1] => 0
[2] => 0
[3] =>0
[4] => 0
[5] => cl osed
(6] => 0
[7] => 1000
)
Arguments
Name Type Required Description
$condition SugarQuery Builde |true The conditional
r Condition object used to
generate the
HAVING clause
Returns

SugarQuery Builder Having Object

Allows for method chaining on the Having Object to add additional conditions.

Raw Methods

The SugarQuery Object has a few helper methods that allow raw SQL statement
parts to be passed into. This allows for more complex statements or edge case
scenarios where a helper function may not have met the requirements for the

query.
whereRaw()

To add to the WHERE clause of SugarQuery Object with raw SQL syntax, you can
utilize the whereRaw() method. This method will append the specified statement,
to the WHERE clause using an AND operator, and will wrap the entire statement
in parenthesis. The following is an example use with the output:

254 /2.508

$Sugar Query = new Sugar Query();
$Sugar Query->sel ect (array(' nane'));

$Sugar Quer y- >f r om(BeanFact ory: : newBean(' Accounts'));

$Sugar Quer y- >wher eRaw("nanme LIKE '9%d% ") ;

The above example will output the following prepared statement when using

compile():

SELECT accounts. nane FROM accounts WHERE (nane LI KE

ts.deleted = ?)

Parameters:
array (

[1] =>0
)

Arguments

"%d%) AND (accoun

Name Type

Required

Description

$sql String

true

The WHERE clause
SQL to be
appended to the
where clause on
the SugarQuery
object. All
conditions passed
in are wrapped in
parenthesis and
appended using
AND (if other
conditions exist on
where clause).

Returns

SugarQuery Builder Where Object

Allows for method chaining on the Where object.

255/2.508

groupByRaw()

To add multiple fields to the GROUP BY statement on the SugarQuery Object, it
may be easiest to use the groupByRaw() method.

$Sugar Query = new Sugar Query();

$Sugar Query->sel ect (array(' account _type', 'industry'));

$Sugar Quer y- >f r om(BeanFact ory: : newBean(' Accounts'));

$Sugar Quer y- >gr oupByRaw "account s. account _t ype, accounts. i ndustry");

The above example will output the following prepared statement when using

compile():

SELECT accounts. account type, accounts.industry FROM accounts WHERE ac
counts.deleted = ? GROUP BY accounts. account type, accounts.industry

Parameters:
array (
[1] => 0

)

Arguments

Name Type Required Description

$sql String true The GROUP BY
statement, without
the GROUP BY
keyword.

Returns

SugarQuery Object

Allows for method chaining on the SugarQuery Object.
orderByRaw()

Using the oderBy() method only allows for adding a single field to the SugarQuery
object at a time. In some cases, you might consider using the orderByRaw/()

256 /2.508

method to add multiple fields or the entire ORDER BY statement to the
SugarQuery object.

$Sugar Query = new Sugar Query();

$Sugar Query->sel ect (array(' nane'));

$Sugar Quer y- >f rom(BeanFact ory: : newBean(' Accounts'));

$Sugar Quer y- >or der ByRaw("account s. nane DESC, accounts.date nodified");

The above example will output the following prepared statement when using

compile():

SELECT accounts. name FROM accounts VWHERE accounts. del eted = ? ORDER BY
account s. nane DESC, accounts.date nodified DESC, accounts.id DESC

Parameters:
array (
[1] =>0

)

Arguments

Name Type Required Description

$sql String true The ORDER BY
statement, without
the ORDER BY
keyword.

Returns

SugarQuery Object

Allows for method chaining on the SugarQuery Object.
havingRaw()

Using the havingRaw() method allows for adding a having statement to the
SugarQuery object.

$Sugar Query = new Sugar Query();

257 /2.508

$Sugar Quer y- >f r om(BeanFact ory: : get Bean(' Accounts'));

$Sugar Query->join('contacts', array('alias' => "industryContacts'));
$Sugar Query->joi n(' opportunities', array('relatedJoin' => '"industryCon
tacts', 'alias' => 'contactsCpportunities'));

$Sugar Quer y- >sel ect () - >set Count Query();

$Sugar Quer y- >wher e() - >equal s(' contact sQpportunities.sales_stage', 'clo
sed');

$Sugar Quer y- >havi ngRaw(" cont act sCpportuni ti es. amount > 1000");

The above example will output the following prepared statement when using

compile():

SELECT COUNT(0) AS record _count FROM accounts INNER JO N accounts_cont
acts jt0_accounts_contacts ON (accounts.id = jt0_accounts_contacts. acc
ount id) AND (jtO_accounts contacts.deleted = ?) INNER JO N contacts i
ndustryContacts ON (industryContacts.id = jtO_accounts_contacts. contac
t _id) AND (industryContacts.deleted = ?) INNER JO N opportunities_cont
acts jtl opportunities _contacts ON jt1l opportunities_contacts. del eted
= ? INNER JO N opportunities contactsQpportunities ON (contactsQpportu
nities.id = jtl opportunities_contacts.opportunity id) AND (contactsQp
portunities.deleted = ?) WHERE (contactsOpportunities.sales_stage = ?)
AND (accounts.deleted = ?) HAVI NG contactsCpportunities.anmunt > 1000

Parameters:
array (
[1] => 0
[2] => 0
[3] => 0
[4] => 0
[5] => cl osed
[6] => 0
)
Arguments
Name Type Required Description
$sql String true The

HAVING statement,
without the

258 /2.508

| HAVING keyword.

Returns
SugarQuery Object

Allows for method chaining on the SugarQuery Object.

Architecture

Overview

This section of Sugar's Developer Guide begins with a high-level overview of the
Sugar platform's architecture and contains documentation on granular concepts in
Sugar such as logic hooks, caching, logging, extensions, job queue, and more.

Please continue to the bottom of this page or use the navigation on the left to
explore the related content.

Platform

Sugar® is built on open standards and technology such as HTML5, PHP, and
JavaScript, and runs on a variety of free and open-source technology like Linux,
MySQL, and Elasticsearch. The Sugar platform also supports common proprietary
databases such as Oracle, IBM DB2, and Microsoft SQL Server.

259 /2.508

Browser
Client

JavaScript Engine

Web Server Scheduler

Server

File System

All of Sugar's customers and partners have access to source code that they can

choose to deploy on-premise or utilize Sugar's cloud service for a SaaS
deployment.

Out of the box, Sugar uses a consistent platform across all clients and devices (e.g.
mobile, web, plug-ins, etc.).

260 /2.508

Front-End Framework

Our clients are based on a front-end framework called Sidecar. Sidecar is built on
open source technology: Backbone.js, jQuery, Handlebars.js, and Bootstrap. The
Sidecar framework provides a responsive UI (to support a variety of form factors)
and uses modern, single-page client architecture. Sugar clients connect to Sugar
server application via our client REST API. The REST API is implemented in PHP
and drives server-side business logic and interacts with a database. If it can be
accomplished via one of our clients, then its equivalent functionality can be
accomplished using our REST API.

The Sugar platform uses modules. Modules are a vertically integrated application
component that is traditionally organized around a single feature or record type
(or underlying database table). For example, contact records are managed via a
Contacts module that contains all the business logic, front-end interface
definitions, REST APIs, data schema, and relationships with other modules.

Custom modules can be created and deployed as needed in order to add new
features to a Sugar application instance.

Lead

Name

Contact Information
Area of Interest
Source

Convert to Customer

Quotes
Line Items

Documents
Filename
Revision
URL/ Path

Metadata

Sugar's modules are defined primarily using Metadata. There are two types of
metadata definitions within Sugar: Vardefs, which define the data model for Sugar
modules; and Viewdefs, which define the user interface components that are used

261/2.508

http://backbonejs.org/
https://jquery.com/
http://handlebarsjs.com/
http://getbootstrap.com/

with a module.

Sugar Metadata is implemented as PHP files that can be modified directly by a
Sugar Developer making filesystem changes, or indirectly through the use of Sugar
Studio and Module Builder by a Sugar Administrator.

Metadata allows you to configure solutions instead of having to write countless
lines of custom code in order to implement common customizations such as adding
custom fields, calculated values, and changing user interface layouts.

Extensions

Beyond metadata, Sugar is highly customizable and includes an extensive
Extensions Framework that provides Sugar Developers the capability to contribute
to pre-defined extension points within the application in a way that is upgrade-safe
and will not conflict with other customizations that exist in the system.

Autoloader

Overview

The autoloader is an API that allows the unified handling of customizations and
customizable metadata while reducing the number of filesystem accesses and
improving performance.

SugarAutoLoader

The SugarAutoLoader class, located in ./include/utils/autoloader.php, keeps a map
of files within the Sugar directory that may be loaded.

Included File Extensions
The autoloader will only map files with the following extensions:

bmp
CSsSs
gif
hbs
html
ico
ipg

e less

262 /2.508

https://support.sugarcrm.com/knowledge_base/administration/studio_and_module_builder/
https://support.sugarcrm.com/knowledge_base/administration/studio_and_module_builder/

e override
* php

* png

o tif

e tpl

e xml

*All other file extensions are excluded from the mapping.

Class Loading Directories
The autoloader will scan and autoload classes in the following directories:

./clients/base/api/
./data/duplicatecheck/
./data/Relationships/
./data/visibility/

Jinclude/

Jinclude/api/
./include/CalendarEvents/
.Jinclude/SugarSearchEngine/
./modules/Calendar/
./modules/Mailer/

Ignored Directories
The following directories in Sugar are ignored by the autoloader mapping:

./.idea/

./cache/
.Jcustom/backup/
.Jcustom/blowfish/
.Jcustom/Extension/
.Jcustom/history/
.Jcustom/modulebuilder/
.Jdocs/

.Jexamples/

./portal/

Jtests/

.Jupload/

./vendor/bin/
.Jvendor/HTMLPurifier/
./vendor/log4php/
./Jvendor/nusoap/
.Jvendor/pclzip/

263/2.508

e ./vendor/reCaptcha/
e ./vendor/ytree/

Configuration API

Overview

Methods to configure loading paths for the AutoLoader API.

addDirectory($dir)

Adds a directory to the directory map for loading classes. Directories added should
include a trailing "/".

Sugar Aut ol oader::addDirectory('relative/filel/path/');

addPrefixDirectory($prefix, $dir)
Adds a prefix and directory to the $prefixMap for loading classes by prefix.

Sugar Aut ol oader: : addPrefi xDirectory(' myPrefix', "relative/file/path/
")

File Check API

Overview

File check methods for use with the AutoLoader API.

existing(...)

Returns an array of filenames that exist in the file map. Accepts any number of
arguments of which can be filename or array of filenames. If no files exist, empty
array is returned.

$fil es = Sugar Aut ol oader: : existing('include/utils.php', "include/Ti meD
ate. php');

264 /2.508

existingCustom(...)

This method accepts any number of arguments, each of which can be filename or
array of filenames. It will return an array of filenames that exist in the file map,
adding also files that exist when custom/ is prepended to them. If the original
filename already had custom/ prefix, it is not prepended again. custom/ files are
added to the list after the root directory files so that if included in order, they will
override the data of the root file. If no files exist, empty array is returned.

$fil es = Sugar Aut ol oader: : exi stingCustonm('include/utils.php', "include
[Ti meDat e. php') ;

existingCustomOnec(...)

Returns the last file of the result returned by existingCustom(), or null if none
exist. Accepts any number of arguments of which can be filename or array of
filenames. Since customized files are placed after the root files, it will return

customized file if exists, otherwise root file.

$fil es = Sugar Aut ol oader: : exi sti ngCust onOne(' i nclude/utils.php');

You should note that the existingCustomOne() method can be used for loading
inline PHP files. An example is shown below:

f or each(Sugar Aut oLoader : : exi sti ngCust omOne(' custoni nyFi |l e. php') as $fi
| e)
{

}

i nclude $fil e;

Alternative to including inline PHP files, loading class files should be done using
requireWithCustom() .

fileExists($filename)

Checks if a file exists in the file map. You should note that ".." is not supported by
this function and any paths including ".." will return false. The path components
should be separated by /. You should also note that multiple slashes are
compressed and treated as single slash.

265/2.508

$file = "include/utils. php';

i f (SugarAutol oader::fileExists($file))
{

}

require_once($file);

getDirFiles($dir, $get_dirs = false, $extension = null)

Retrieves the list of files existing in the file map under the specified directory. If no
files are found, the method will return an empty array. By default, the method will
return file paths, however, If $get dirs is set to true, the method will return only
directories. If $extension is set, it would return only files having that specific
extension.

$files = SugarAutol oader::getDirFiles('include');

getFilesCustom($dir, $get_dirs = false, $extension =
null)

Retrieves the list of files existing in the file map under the specified directory and
under it's custom/ path. If no files are found it will return empty array. By default,
the method will return file paths, however, If $get dirs is set to true, the method
will return only directories. If $extension is set, it would return only files having
that specific extension.

$fil es = Sugar Aut ol oader: : get Fil esCust on(' i ncl ude');

lookupFile($paths, $file)

Looks up a file in the list of given paths, including with and without custom/ prefix,
and return the first match found. The custom/ directory is checked before root
files. If no file is found, the method will return false.

$pat hs = array(
"include',
" nodul es',

)

266/ 2.508

$fil es = Sugar Aut ol oader: : | ookupFi | e($paths, 'utils.php');

requireWithCustom($file, $both = false)

If a custom/ override of the file or the file exist, require once it and return true,
otherwise return false. If $both is set to true, both files are required with the root
file being first and custom/ file being second. Unlike other functions, this function
will actually include the file.

$fil e = Sugar Aut ol oader: :requireWthCuston('include/utils.php');

You should note that the requireWithCustom() method should be used for loading
class files and not inline PHP files. Inline PHP files should be loaded using the
existingCustomOne() method.

File Map Modification API

Overview

Methods to modify files in the AutoLoader API. All the functions below return true
on success and false on failure.

addToMap($filename, $save = true)

Adds an existing file to the file map. If $save is true, the new map will be saved to
the disk file map, otherwise, it will persist only until the end of the request. This
method does not create the file on the filesystem.

Sugar Aut ol oader : : addToMap(' cust om nyFi | e. php');

delFromMap($filename, $save = true)

Removes a file from the file map. If $filename points to a directory, this directory
and all files under it are removed from the map. If $save is true, the new map will
be saved to the disk file map, otherwise, it will persist only until the end of the
request. This method does not delete the file from the filesystem.

267 /2.508

Sugar Aut ol oader : : del Fromvap(' cust om nyFi | e. php');

put(s$filename, $data, $save = false)

Saves data to a file on the filesystem and adds it to the file map. If $save is true,
the new map will be saved to the disk file map, otherwise, it will persist only until
the end of the request.

$file = 'custom nyFile. php';

Sugar Aut ol oader: :touch($file, true);

Sugar Aut ol oader: : put ($file, '<?php /*file content*/ ?>', true);

touch(s$filename, $save = false)
Creates the specified file on the filesystem and adds it to the file map. If $save is
true, the new map will be saved to the disk file map, otherwise, it will persist only

until the end of the request.

Sugar Aut ol oader: : touch(' custoni nyFil e. php', true);

unlink(s$filename, $save = false)

Removes the specified file from the filesystem and from the current file map. If
$save is true, the new map will be saved to the disk file map, otherwise, it will
persist only until the end of the request.

Sugar Aut ol oader: : unl i nk(' custonl nyFil e. php', true);

Metadata API

Overview

Methods to load metadata for the AutoLoader API.

Metadata Loading

268 /2.508

For the specific sets of metadata, such as detailviewdefs, editviewefs, listviewdefs,
searchdefs, popupdefs, and searchfields, a special process is used to load the
correct metadata file. You should note that the variable name for the defs, e.g.
"detailviewdefs", is usually the same as variable name, except in the case of
"searchfields" where it is "SearchFields".

The process is described below:

1. If ./custom/modules/{$module }/metadata/{$varname}.php exists, it is used
as the data file.

2. If ./modules/{$module}/metadata/metafiles.php or
.Jcustom/modules/{$module }/metadata/metafiles.php exists, it is loaded
with the custom file being preferred. If the variable name exists in the data
specified by the metafile, the corresponding filename is assumed to be the
defs file name.

3. If the defs file name or its custom/ override exists, it is used as the data file
(custom one is preferred).

4. If no file has been found yet,
./modules/{$module}/metadata/{$varname}.php is checked and if existing,
it is used as the data file.

5. Otherwise, no metadata file is used.

loadWithMetafiles($module, $varname)

Returns the specified metadata file for a specific module. You should note that due
to the scope nature of include(), this function does not load the actual metadata file
but will return the file name that should be loaded by the caller.

$net adat aPat h = Sugar Aut ol oader: : |1 oadWthMet afil es(' Accounts', 'edit
vi ewdefs');

loadPopupMeta($module, $metadata = null)
Loads popup metadata for either specified $metadata variable or "popupdefs"
variable via loadWithMetafiles() and returns it. If no metadata found returns empty

array.

$popupMet adat a = Sugar Aut ol oader: : | oadPopupMet a(' Accounts');

loadExtension($extname, $module = "application")

269 /2.508

Returns the extension path given the extension name and module. For global
extensions, the module should be "application" and may be omitted. If the
extension has its own module, such as schedulers, it will be used instead of the
$module parameter. You should note that due to the scope nature of include(), this
function does not load the actual metadata file but return the file name that should
be loaded by the caller. If no extension file exists it will return false.

// The list of extensions can be found in ./Mdul el nstall/extensions.

php
$ext ensi onPat h = Sugar Aut ol oader: : | oadExt ensi on(' | ogi chooks") ;

Caching

Overview

Much of Sugar's user interface is built dynamically using a combination of
templates, metadata and language files. A file caching mechanism improves the
performance of the system by reducing the number of static metadata and
language files that need to be resolved at runtime. This cache directory stores the
compiled files for JavaScript files, Handlebars templates, and language files.

In a stock instance, the cache is located in the ./cache/ directory. If you would like
to move this directory to a new location, you can update the config parameter
cache dir in config.php or config override.php to meet your needs. It is not
advisable to move the cache to another network server as it may impact system
performance.

Developer Mode

To prevent caching while developing, a developer may opt to turn on Developer
Mode by navigating to Admin > System Settings > Advanced > Developer Mode.
This will disable caching so that developers can test code-level customizations
without the need to manually rebuild the cache, which is especially helpful when
developing templates, metadata, or language files. The system automatically
refreshes the file cache. Make sure to deactivate Developer Mode after completing
customizations because this mode degrades system performance.

Uploads

Overview

The upload directory is used to store files uploaded for imports, attachments,

270/2.508

documents, and module loadable packages.

Uploads

The upload directory is used to store any files uploaded to Sugar. By default,
anything uploaded to Sugar is stored in the ./upload/ directory. You can change
this directory by updating the upload dir configuration variable. Once uploaded,
each file is stored in a subdirectory derived from the UUID filename. For example,
the file 3657325a-bdd6-11eb-9a6¢-08002723a3b8 will now be stored in

the ./upload/25a/ subdirectory. These UID character locations were selected to

ensure even distribution of files across the new subdirectories.

There are several file-size limits that affect uploads to Sugar:

Setting Name

Location

Description

Default

upload max filesize

php.ini

Maximum allowed
size for uploaded
files

2 MB

post max size

php.ini

Maximum size of
POST data that
PHP will accept

8 MB

upload maxsize

config.php

The maximum
individual file size
that users can
upload to modules
that support file
uploads

30 MB

max aggregate em
ail attachments byt
es

config.php

The maximum
allowed size of all
uploaded
attachments added
together for a
single email
message

10 MB

The lowest of the first three values above will be respected when an oversized file
is uploaded to Sugar. The first two settings are the PHP
server's upload max filesize and post max size, which are configured in your
system's php.ini file. The third setting is the Sugar
configuration for upload maxsize, which will restrict the upload limit from within

Sugar without affecting any other applications that may be running on your server.
This limit can be easily adjusted in Sugar via Admin > System Settings but is only
useful if it is set to a size smaller than the php.ini limits.

2711/2.508

Finally, the max aggregate email attachments bytes setting will permit users to
upload files as email attachments according to the previous size limits but restrict

users from uploading more files to a single message than its configuration
permits.

Note: PHP-defined file size settings and the upload directory cannot be modified
for instances hosted on Sugar's cloud service.

Upload Extensions

By default, several extension types are restricted due to security issues. Any files
uploaded with these extensions will have '.txt' appended to it. The restricted
extensions are listed below:

* php
* php3
e php4d
* php5
° pl

e cgi
* py

® asp
e cfm
° js

e vbs
e html
e htm

You can add or remove extensions to this list by modifying sugar configuration
setting for upload badext. You should note that this setting cannot be modified for
instances hosted on Sugar's cloud service.

How Files Are Stored

Note Attachments

When a file is uploaded to Sugar attached to a note, the file will be moved to the
upload directory with a GUID name matching that of the notes id. The attributes of
the file, such as filename and file mime type, will be stored in the note record.

The SQL to fetch information about a notes attachment is shown below:

SELECT filename, file_m nme_type FROM notes;

27212.508

Email Attachments

Email attachments are stored the same way as note attachments. When an email is
imported to Sugar, the file will be moved to the upload directory with a GUID file
name matching that of the notes id. The attributes of the file, such as filename and
file mime type, will be stored in the note record and the note will have a

parent type of 'Emails'. This relates the attachment to the content of the email.

The SQL to fetch information about an emails attachment is shown below:
SELECT filename, file_m nme_type FROM notes INNER JO N emails ON note

s.parent _type = "Emails' AND notes.parent_id = ermails.id INNER JON em
ails text ONemails.id = emails_text.email _id;

Picture Fields

Picture fields will upload the image to the upload directory with a GUID name and
store the GUID in the database field on the record. An example of picture field can
be found on the Contacts module.

For a contact, the id of the picture attachment can be found with the SQL below:

SELECT picture FROM cont acts;

Knowledge Base Attachments

When working with the Knowledge Base, files and images attached to the form will
be created as a record in the /#EmbeddedFiles module. These files will be stored
as <GUID> of EmbbededFiles record in the upload folder.

All other file enclosed to attachments field of KBContents will be also saved as
Notes record in the upload folder.

The SQL to fetch information about a knowledge base attachment is shown below:
sel ect kb.id, kb.nane, kb.revision, n.filename, n.file_mne_type, n.

file_ext fromnotes n, kbcontents kb where n.parent _type = "KBContents
"‘and n.parent _id = kb.id order by kb.nanme, kb.revision;

Module Loadable Packages

Module Loader packages are stored in the system differently than other uploads.

27312.508

They are uploaded to the ./upgrades/module directory, each uploaded file is now
stored in a subdirectory derived from the UUID filename. Existing files will be
moved into subdirectories during upgrade. For example, the file 3657325a-
bdd6-11eb-9a6¢-08002723a3b8 will now be stored in

the ./upload/25a/ subdirectory. These UID character locations were selected to
ensure even distribution of files across the new subdirectories.

The details of the package, such as installation status and description, are stored
in the upgrade history table.

The SQL to fetch information about an installed package is shown below:

SELECT * FROM upgrade_hi story;

CSV Imports

When importing records into Sugar, the most recent uploaded CSV file is stored in
the upload directory as IMPORT <module> <user id>. Once the import has been
run, the results of the import are stored in ./upload/import/ directory using a
predefined format using the current user's id. The files created will be as follows:

e dupes_<user id>.csv : The list of duplicate records found during the
import

e dupesdisplay <user id>.csv: The HTML formatted CSV for display to
the user after import

e error_<user id>.csv : The list of errors encountered during the import

e errorrecords_<user _id>.csv: The HTML formatted CSV for display to the
user after import

e errorrecordsonly _<user id>.csv : The list of records that encountered an
error

e status_<user id>.csv : Determines the status of the users import

Working with File Uploads

Overview
The UploadFile class handles the various tasks when uploading a file.
Retrieving a Files Upload Location

To retrieve a files upload path, you can use the get upload path method and pass
in the file's GUID id.

274 12.508

requi re_once 'include/upload file.php';
Upl oadFi |l e:: get _upload path($file_id);

This method will normally return the path as:

upl oad: // 1d0f d9cc- 02e5-f 6¢cd- 1426- 51a509a63334

Retrieving a Files Full File System Location

To retrieve a files full system path, you can use the get upload path and real path
methods as shown below:

requi re_once 'include/upload file.php';
Upl oadFi | e: : real pat h(Upl oadFi | e: : get _upl oad _path($file_id));

This method will normally return the path where they are uploaded to. Each
uploaded file is now stored in a subdirectory derived from the UUID filename.
Existing files will be moved into subdirectories during upgrade. For example, the
file 3657325a-bdd6-11eb-9a6¢-08002723a3b8 will now be stored in

the ./upload/25a/ subdirectory. These UID character locations were selected to
ensure even distribution of files across the new subdirectories.

Retrieving a Files Contents

As an alternative to using file get contents or sugar file get contents, you can
retrieve the contents of a file using the get file contents method as shown below:

requi re_once 'include/upload file.php';
$file = new Upl oadFile();
/1get the file location

$file->tenp file |ocation = UploadFile::get_upload path($file_id);
$file _contents = $file->get file contents();

Duplicating a File

27512.508

To duplicate an uploaded file, you can use the duplicate file method by passing in
the files current id and the id you would like it copied to as shown below:

requi re_once 'include/upload file.php';

$upl oadFil e = new Upl oadFil e();
$result = $upl oadFile->duplicate file($oldFileld, $newFileld);

Email

Overview

Outlines the relationships between emails, email addresses, and bean records.

Email Tables

Table Name Description

email addresses Each record in this table represents an
email address in the system. Note that
the invalid email column and opt out
column are stored on this table,
meaning that they are treated as
properties of the email address itself,
not a relationship attribute between a
given email address and related record.
This means if a Lead opts-out of a
campaign, this email address will be
considered opted-out in all contexts, not
just with further correspondence with
that specific Lead.

email addr bean rel The email addr bean rel table
maintains the relationship between the
email address and its parent module
record (Contacts, Accounts, Leads,
Users, etc) to determine which record of
the given module the email address
belongs to. Note that this relationship
table also has the primary address and
reply to address columns to indicate
whether a given email address for a
given record is the primary email
address, the reply to email address, or
some other address for the contact. A

276 /2.508

contact can have one address flagged as
primary, and one flagged as "Reply To".
This can be the same email address or
two different email addresses.

emails email addr rel

The emails email addr rel table
maintains the relationships between the
email address and email records. Note
that this relationship table also has the
address type column to indicate if the
email address is related to the email as
a "To", "From", "CC", or "BCC" address.
The valid values at the database level
for this column are: from, to, cc, bcc.

emails

Each record in this table represents an
email in the system. Note that emails
fall outside the scope of this document,
but are mentioned here for clarity, as
the two modules are closely related.

emails beans

Similar to the email addr bean rel
table, the emails beans table maintains
the relationship between an email
record and any related records
(Contacts, Accounts, Cases, etc.).

<module>

This is used to show how an email
address record relates to a record in
any module is set on bean module. If
bean module is set to Contacts,
<module> would be the contacts table.

The following diagram illustrates table relationships between email addresses and
other modules, email addresses and email records, and email records and other

modules.

277 12.508

email_addresses emails_email_addr_rel emails emails_text
id id id email_id
email_address email_address_id parent_id description
email_address_caps email_id date_sent description_html
invalid_email address_type name raw_source
opt_out
email_addr_bean_rel emails_beans
id id
email_address_id email_id
bean_id bean_id
bean_module bean_module
primary_address
reply_to_address
<module>
id
name

Helper Queries
Retrieve the Primary Email Address of a Contact
The following query will fetch the email address given a specific contacts id:

SELECT
emai | _address
FROM enui | _addr esses
JO N enni | _addr_bean_rel eabr
ON eabr.emai|l _address id = enmail addresses.id
VWHERE eabr . bean_nodul e = "Cont act s"
AND eabr.bean id = "<contact id>"
AND enmi | _addresses.invalid email =0
AND eabr.deleted = 0
AND eabr. primary_address = 1;

Retrieve All Records Related to an Email Address

The following query will fetch the id and module name of all records related to the
specified email address:

SELECT

27812.508

bean_nodul e,
bean_id
FROM enai | _addr _bean_rel eabr
JO N enuni | _addresses
ON eabr.emai|l _address id = enmail|l _addresses.id
VWHERE enmi | _addresses. enmai | _address = "<emai|l address>"
AND eabr . del eted = O;

Retrieve All Emails Sent From An Email Address

The following query will fetch all emails sent from a specified email address:

SELECT
emai | s. nane,
emai | s. dat e_sent

FROM enai | s
JON enails_email _addr _rel eear
ON eear.email _id = emils.id

JO N enni | _addresses
ON eear.enmni|l _address id = ennil|l addresses.id
VWHERE enmi | _addresses. enmai | _address = "<emai|l address>"
AND eear . address_type = "fronf
AND eear.deleted = 0

Cleanup Duplicate Email Addresses
The following queries will remove any duplicate email addresses.

First, create a temporary table with distinct records from the email addr bean rel
table:

create table email _addr_bean_rel tnp_ful
SELECT
*
FROM enui | _addr _bean_rel
WHERE del eted = ' 0’
GROUP BY enunil address id,
bean_nodul e,
bean id
ORDER BY primary_address DESC,

27912.508

Next, clear out the email addr bean rel table:

truncate emai|l addr _bean rel;

Move the records from the temporary table back to email addr bean rel:

| NSERT | NTO enai | _addr _bean_rel
SELECT

*

FROM enmai | _addr _bean_rel _tnp;

Validate that all of the duplicates have been removed:

SELECT

COUNT(*) AS repetitions,
date_nodi fi ed,

bean_id,

bean_nodul e

FROM enui | _addr _bean_rel
VWHERE del eted = '0'
GROUP BY bean_id,
bean_nodul e,

emai | _address_id

HAVI NG repetitions > 1;

Finally, remove the temporary table:

drop tabl e enmanil _addr_bean_rel _tnp;

Email Address Validation

Sugar validates emails addresses according to the RFC 5321 and RFC 5322
standards. The following sections will detail how a developer can validate email
addresses both server and client side.

Server Side

280/ 2.508

https://tools.ietf.org/html/rfc5321
https://tools.ietf.org/html/rfc5322

To validate an email address in a server-side context, the
EmailAddress::isValidEmail() static method should be used. For example:

$emai | Address = "test @xanpl e. cont';
$isValid = Enmai | Address: :isVali dEmail ($enmi | Addr ess) ;

The EmailAddress::isValidEmail method leverages the PHPMailer library bundled
with Sugar, specifically the PHPMailer::validateAddress method, which validates
the address according to the REC 5321 and RFC 5322 standards.

Client Side

To validate an email address client-side context,
the app.utils.isValidEmailAddress() function can be used.

var enai | Address = "test @xanpl e. cont;
var isValid = app.utils.isValidEnmail| Address(enai | Addr ess);

Note: This function is more permissive and does not conform exactly to the RFC
standards used on the server. As such, the email address will be validated again on
the server when the record is saved, which could still fail validation.

Mailer Factory

Overview
The Mailer Factory, located in ./modules/Mailer/MailerFactory.php, helps
developers generate outbound mailers for the system account as well as individual

user accounts. The Mailer Factory is a replacement for SugarPHPMailer which is
now deprecated.

Mailers

There are two types of outbound mailers: System and User. The follow sections will
outline how to use each.

System Mailer

The system outbound mailer can be set using the getSystemDefaultMailer method.

281/2.508

https://tools.ietf.org/html/rfc5321
https://tools.ietf.org/html/rfc5322

This will set the mailer to use the system outbound email account.
Example

$mai l er = Mail erFactory:: get SystenDefaul t Mailer();

User Mailer

The user outbound mailer can be set using the getMailerForUser method. This will
set the mailer to use the outbound email account for a specific user.

Example

$user = BeanFactory::getBean("Users", 1);
$mail er = Mail erFactory::get Mail er For User ($user) ;

Populating the Mailer

Setting the Subject

To set the email subject, use the setSubject method. It accepts a plain text string.
Example

$mai | er - >set Subj ect ("Test Mai |l Subject");

Setting the Body

Depending on your email type, you can use the setTextBody and/or setHtmlBody
methods respectively to populate the content of the email body.

Example

/| Text Body
$mai | er->set Text Body("This is a text body nmessage");

/1 HTM. Body
$mai |l er->set Ht m Body(" This is an HTM.</ b> body nessage.
 You ca
n use htm tags.");

282 /2.508

Note: The email HTML body is not necessary if you have populated the text body.
Adding Recipients
To add recipients to your email, you can use the addRecipientsTo,

addRecipientsCc, or addRecipientsBcc methods . These methods require an
Emailldentity object as a parameter.

Example
$nai | er - >addReci pi ent sTo(new Enai |l I dentity(' userl@ourconpany.crm, 'U
ser 1'));
$mai | er - >addReci pi ent sCc(new Enai |l I dentity(' user2@our conpany.crm, 'U
ser 2'));

$mai | er - >addReci pi ent sBcc(new Emai |l I dentity(' user 3@our conpany. crni,
User 3'));

Clearing Recipients

You can clear the current recipients specified in the mailer by using the
clearRecipients method.

Example
$to = true;
$cc = true;

$bcc = true;

$mai | er - >cl ear Reci pi ent s($to, $cc, $bcc);

Adding Attachments
To add attachments, use the addAttachment method.
Example

$path = "/path/to/your/docunent";
$mai | er - >addAt t achnment (new Att achnent ($pat h));

Sending Emails

283/2.508

Once your email is populated, you can send it using the send method. The send
method will return the content of the mail. If the Mailer Factory experiences an
error, it will throw an exception. It is highly recommended to use a try and catch
when sending emails.

Example

$mai | Subj ect = "Test Mil Subject”;
$mai | HTML = "<hl1>Sugar CR\VK/ hl>
 Test body nessage";
$mai | To = array(
0 => array(
‘name’ => 'Test User',
"emai | => 'test @ourconpany.crm,

1 => array(
"nane'’ => 'Qther Recipient',

"emai |’ => 'emil| @ddres'
)
)
$mai | Attachment = "/path/to/pdf/files/docunent. pdf";
try {
$mai l er = Mail erFactory::get SystenDefaul t Mail er();
$mai | Transm ssi onProt ocol = $nuail er->get Mai | Transmi ssi onPr ot ocol ()

$mai | er - >set Subj ect ($mai | Subj ect) ;
$body = trim $mail HTM.) ;
$textOnly = Emai |l Formatter::isText Onl y($body);
if ($textOnly) {
$mai | er - >set Text Body($body) ;
} else {
$text Body = strip_tags(br2nl ($body)); // need to create the p
ai n-text part
$mai | er - >set Text Body($t ext Body) ;
$mai | er - >set Ht nl Body($body) ;
}
$mai | er - >cl ear Reci pi ents();
foreach ($mail To as $mail To) {
$mai | er - >addReci pi ent sTo(new \ Emai | | dentity($mail To['email'],
$mai | To[' nanme']));
}
$mai | er - >addAt t achnent (new \ Att achnment ($mai | Attachnment));
$result = $mail er->send();
if (Sresult) {

284 /2.508

/1 $result will be the body of the sent enui
} else {
/1l an exception will have been thrown
}
} catch (Mail erException $nme) {
$nessage = $ne- >get Message() ;
switch ($nme->get Code()) {
case \Mail er Exception: : Fai |l edToConnect ToRenot eSer ver:
$GOBALS["l 0og"] ->fat al ("BeanUpdat esMail er :: error sending
email, systemsmp server is not set");
br eak;
defaul t:
$GOBALS["l 0og"] ->fat al ("BeanUpdat esMail er :: error sending
e-mai |l (nmethod: {$nmail Transm ssionProtocol}), (error: {$nmessage})");
br eak;

}

Email Addresses

Overview

Recommended approaches when working with email addresses in Sugar.

Client Side

Recommended approaches when accessing email addresses in Sugar from a client.

Sidecar
Sidecar is the JavaScript Ul framework that users interact within their browsers.
Fetching Email Addresses in Sidecar

In Sidecar, the email field will return an array of email addresses and their
properties for the record. Given the model, you can fetch it using:

var enai | Addresses = nodel .get('email');

Note: In the past, developers could use model.get("emaill") to fetch the primary
email address. While this currently does work, these legacy email fields
are deprecated and may be subject to removal in an upcoming Sugar release.

285/2.508

Fetching a Primary Email Address in Sidecar

To fetch the primary email address for a bean, you can use
app.utils.getPrimaryEmailAddress():

var primaryEmail Address = app. utils. getPrimaryEnmail Addr ess(nodel) ;

Fetching an Email Address by Properties in Sidecar

To fetch an email address based on properties such as invalid email, you can use
app.utils.getEmailAddress(). This function will return the first email address that
matches the options or an empty string if not found. An example is shown below:

var emuai |l Address = app. utils. get Enai |l Address(nodel, {invalid emil:
true});

If you have complex filtering rules, you can use .find() to fetch an email address:

var enmai | Address = _.find(nodel.get('email'), function(enail Address)
{
if (email Address.invalid email == true) {
return enail Address;
}
1)

Validating Email Addresses in Sidecar
To validate an email address, you can use app.utils.isValidEmailAddress():

var isValid = app.utils.isValidEnail Address(enai | Address);

Note: This function is more permissive and does not conform exactly to the RFC
standards used on the server. As such, the email address will be validated again on
the server when the record is saved, which could still fail validation. More
information can be found in the email address validation section.

Iterating Email Address in Sidecar

To iterate through email addresses on a model, you can use .each():

286 /2.508

_.each(nodel .get("email"'), function(email Address) {
consol e. |l og(enai | Addr ess. enai | _addr ess);

1)

Updating Email Addresses in Sidecar

This section covers how to manipulate the email addresses for a model.

Adding Email Addresses in Sidecar

In Sidecar, you can add email addresses to a model using the custom function
below:

function addAddress(nodel, email) {
var exi stingAddresses = nodel.get('email') ? app.utils.deepCopy(no
del .get('email')) : [],
dupeAddress = _.find(existingAddresses, function(address){
return (address.enmnil _address === email);

1),

success = fal se;

if (_.isUndefined(dupeAddress)) {
exi sti ngAddr esses. push({
enmai | _address: email,
pri mary_address: (existingAddresses.|length === 0),
opt _out: app.config. newkEnai | AddressesOptedQut || fal se
1)
nodel . set (' emai |l ', existingAddresses);
success = true;

}

return success;

Removing Email Addresses in Sidecar

In Sidecar, you can remove email addresses from a model using the custom
function below:

function renoveAddress(nodel, email) {
var exi stingAddresses = app. utils. deepCopy(nodel .get('email'));
var index = fal se;
_.find(existingAddresses, function(enail Address, idx){

287 /2.508

if (email Address. enmail _address === email) {
i ndex = idx;
return true;

}
1)
var pri maryAddressRenoved = fal se;
if (index !'== false) {
pri mar yAddr essRenoved = !!exi stingAddresses[index][' primary_ad
dress'];
}
/'l Reject this index from existing addresses
exi stingAddresses = _.reject(existingAddresses, function (emnaillnf
o, i) { return i == index; });
/1 If a renoved address was the primary email, we still need at le

ast one address to be set as the prinmary enai
i f (primryAddressRenoved) {
/lLet's pick the first one
var address = _.first(existingAddresses);
if (address) {
address. primary_address = true;

}
}

nodel . set (' emai | ', existingAddresses);
return primaryAddr essRenoved,;

Server Side

Recommended approaches when accessing email addresses in Sugar from the
server.

SugarBean
The SugarBean is Sugars PHP core object model.
Fetching Email Addresses Using the SugarBean

Using the SugarBean, the $bean->emailAddress->addresses property will return
an array of email addresses and its properties. The $bean->emailAddress property

288/2.508

makes use of the EmailAddress class which is located
in ./modules/EmailAddresses/EmailAddress.php. An example is shown below:

$enmai | Addr esses = $bhean->enmni | Addr ess- >addr esses;

Fetching a Primary Email Address Using the SugarBean

To fetch the primary email address for a bean, you can use
$bean->emailAddress->getPrimaryAddress():

$pri mar yEnmai | Addr ess = $bean- >enuni | Addr ess- >get Pri mar yAddr ess($bean)

Another alternative is to use the email addresses primary relationship:

$pri mar yEmai | Address = fal se;
if ($this->load relationship('enail_addresses primary')) {
$rel at edBeans = $t his->emai | _addresses_pri mary->get Beans() ;
if (!enpty($rel atedBeans)) {
$pri mar yEmai | Address = current ($rel at edBeans) ;

}

You may also choose to iterate the email address list with a foreach(). An example
function is shown below:

function getPri maryEmai | Addr ess($bean)

{
foreach ($bean->enuni | Address->addresses as $emai | Address) {
if ($email Address[' primary_address'] == true) {
return $enuni |l Addr ess;
}
}
return fal se;
}

Fetching an Email Address by Properties Using the SugarBean

289/2.508

To fetch an email address based on properties such as invalid email, you can use a
foreach():

$result = fal se;
foreach ($bean->enunil Address->addresses as $enmi | Address) {
if ($email Address['invalid emil']) {
$result = $emmi |l Address;
br eak;

Validating Email Addresses Using the SugarBean
To validate an email address, you can use $bean->emailAddress->isValidEmail():

$isValid = $bean->enuni | Addr ess->i sVal i dErmai | ($enmi | Addr ess) ;

Note: The EmailAddress::isValidEmail method leverages the PHPMailer library

bundled with Sugar, specifically the PHPMailer::validateAddress method, which
validates the address according to the RFC 5321 and RFC 5322 standards. More
information can be found in the email address validation section.

Iterating Email Addresses Using the SugarBean
To iterate through email addresses on a bean, you can use foreach():

foreach ($bean->enuai | Address->addresses as $emai | Address) {
$AOBALS['l 0g'] ->i nfo($enmai | Address[' emai | _address']);

Fetching Beans by Email Address Using the SugarBean

To fetch all beans related to an email address you can
use getBeansByEmailAddress():

$beans = $bean- >emai | Addr ess- >get BeansByEnai | Addr ess($enmai | Addr ess) ;

If you don't have a bean available, you may choose to create a new EmailAddress
object:

290/2.508

https://tools.ietf.org/html/rfc5321
https://tools.ietf.org/html/rfc5322

$sea = BeanFactory:: newBean(' Enai | Addr esses');
$sea- >get BeansByEnmai | Addr ess($enmai | Addr ess) ;

Updating Email Addresses Using the SugarBean
This section covers how to manipulate the email addresses for a bean.
Adding Email Addresses Using the SugarBean

To add an email address to the bean, you can
use $bean->emailAddress->addAddress():

$bean- >enuni | Addr ess- >addAddr ess(' address@ugar.crm);

Note: The addAddress() function has additional parameters that are defaulted for
determining if the email address is a primary, reply to, invalid, or opted out email
address. You can also specify an id for the email address and whether or not the
email address should be validated.

function addAddress($addr, $primary=fal se, $replyTo=false, $invalid=
fal se, $optCQut=false, $enmail _id = null, $validate = true)

Removing Email Addresses Using the SugarBean
To remove an email address you can use $bean->emailAddress->removeAddress():

$bean- >enuni | Addr ess- >r enoveAddr ess(' address@ugar.crm);

PDF Templates

Using the Sugar PDF templates, you can reference the primary email address of
the bean using:

{$fields.emni| _addresses prinmary. enail _address}

REST API

291/2.508

Sugar comes out of the box with an API that can be called from custom
applications utilizing the REST interface. The API can be used to mass create and
update records in Sugar with external data. For more information on the REST API
in Sugar, please refer to the Web Services documentation.

Creating Email Addresses Using the REST API

When creating records in Sugar through the API, modules with relationships to
email addresses can utilize the email link field to specify email addresses for a
record. Using the email link field, you can specify multiple email addresses to
assign to the record. You may specify the following additional information
regarding each email address being added:

Property Description

invalid email Specify this email address as being
invalid

opt out Specify this email address as being

opted out. More information on opt-outs
can be found in the Emails
documentation.

primary address Specify this email address as the
primary

Using the /<module> POST endpoint, you can send the following JSON payload
to create a contact record with multiple email addresses using the email link field:
POST URL: http://<site url>/rest/v<version>/Contacts

{

"first_name":" Rob",
"l ast _nane": " Robertson",
"email "
{
"emai | _address":"rob.robertson@ugar.crni,
"primary_address":"1",

“invalid email":"0",
"opt_out":"0"

|

{
"emai | _address":"rob@ugar.crni,
"primary_address":"0",
“invalid email":"0",
"opt_out":"1"

}

292 /2.508

https://support.sugarcrm.com/smartlinks/application_guide/emails/hdr_understanding_email_address_opt-outs/

For more information on the /<module>/:record POST endpoint, you can refer to
your instance's help documentation found at:

http://<site url>/rest/v<version>/help

Or you can reference the <module> POST PHP example.

Updating Email Addresses Using the REST API

When updating existing records in Sugar through the API, modules with
relationships to email addresses can use the email link field to specify email
addresses for a record. Using the email link field, you can specify multiple email
addresses to update the record with. You may specify the following additional
information regarding each email address being added:

e invalid_email : Specify this email address as being invalid
e opt_out : Specify this email address as being opted out
e primary address : Specify this email address as the primary

Using the /<module>/:record PUT endpoint, you can send the following JSON
payload to update a contact record with multiple email addresses:
PUT URL: http://<site url>/rest/v<version>/Contacts/<record id>

{
"email "

{
"emai | _address":"rob. robertson@ugar.crn,
"primary_address":"1",
"invalid_email":"0",
"opt_out":"0"

}

{
"emai | _address":"rob@ugar.crni,
"primary_address":"0",
"invalid email":"0",
"opt_out":"1"

}

293/2.508

For more information on the /<module>/:record PUT endpoint, you can refer to
your instance's help documentation found at:

http://<site url>/rest/v<version>/help

You want to reference the <module>/:record PUT PHP example.
Legacy Email Fields
The legacy email fields in Sugar are deprecated and may be subject to removal in

an upcoming Sugar release. When using the emaill field, the default functionality
is to import the email address specified as the primary address.

Legacy Email Field Description

emaill The text value of primary email address.
Does not indicate if the email address is
valid or opted-out.

email2 The text value of first non-primary email
address. Does not indicate if the email
address is valid or opted-out.

Note: For importing multiple email addresses with properties, you will need to use
the email link field.

Creating Email Addresses Using Direct SQL

When importing records into Sugar directly via the database, it is important that
you understand the data structure involved before loading data. Email addresses
are not stored directly on the table for the module being imported in but are
related via the email addr bean rel table.

accounts
email_addr_bean_rel . id
(" email_address_id
email_addresses bean_module contacts
id -~ bean_id - id
leads
— id

The table structure for email addresses can be seen from the database via the

294/ 2.508

following SQL statement:

SELECT

emai | _addr_bean_rel . bean_id,

emai | _addr _bean_rel . bean_nodul e,

emai | _addresses. emai | _addr ess

FROM enui | _addr _bean_rel

| NNER JO N enmi | _addresses

ON enai | _addresses.id = enail _addr_bean rel.enmail _address _id
AND emei | _addr _bean_rel.deleted = 0
VWHERE enmi | _addresses. del eted = O;

Checking for Duplicates

Email addresses can become duplicated in Sugar from a variety of sources
including API calls, imports, and from data entry. There are a few ways to have the
system check for duplicate contact records, but not many of those methods work
for checking email addresses for duplicates. The following section will demonstrate
how to find and clean up duplicate email addresses using SQL.

The following SQL query can be used to locate if any email addresses are being
used against more than one bean record within Sugar:

SELECT

emai | _addresses. emai | _addr ess,

COUNT(*) AS enmi | _address_count

FROM enmi | _addr _bean_r el

| NNER JO N enui | _addresses

ON enmuai | _addresses.id = email _addr_bean rel.emai|l _address_id
AND enui | _addr _bean rel.deleted = 0
VWHERE enmi | _addresses.deleted = 0

GROUP BY enmi | _addresses. enai | _address

HAVI NG COUNT(*) > 1;

Note: If you convert a Lead record to a Contact record, both the Lead and the
Contact will be related to the same Email Address and will return as having
duplicates in this query. You can add the following line to the WHERE clause to
filter the duplicate check down to only one bean type:

AND enui | _addr _bean_rel.bean_nodule = ' Contacts'

295/2.508

Email addresses can not only be duplicated in the system but can occasionally be
missing critical data. Each bean record with an email address assigned to it should
have an email address designated the primary. The following query will locate any
bean records that have at least one email address, where there is not an email
address designated as the primary:

SELECT
emai | _addr_bean_rel . bean_nodul e,
emai | _addr _bean_rel . bean_id,
COUNT(*) AS enmil _count,
COUNT(primary_emai | _addr_bean_rel.id) AS primary_enail _count
FROM enai | _addr _bean_r el
LEFT JO N enai|l _addr _bean_rel prinmary_enail addr_bean _rel
ON primary_emai | _addr_bean_rel . bean_nodul e = enmai | _addr _bean_rel . bean
_nodul e
AND primary_emai |l _addr _bean_rel.bean_id = enanil _addr_bean_rel.bean_id
AND primary_emai | _addr _bean rel .primary_address = "1’
AND primary_emai |l _addr _bean _rel.deleted = '0'
VWHERE enmi |l _addr _bean rel.deleted ="'0'
GROUP BY emmi | _addr _bean_rel . bean_nodul e,
emai | _addr _bean _rel.bean_id
HAVI NG primary_emai|l _count < 1;

Note: If you are a SugarCloud customer, you can open up a case with Sugar
Support to have this query run for you.

Removing Duplicates

If it is determined you have duplicate email addresses being used in your system,
you can use the following query to clean up the records:

START TRANSACTI ON;
CREATE
TABLE enmi | _addr _bean_rel _tnp
SELECT
*
FROM enmi | _addr _bean_r el
WHERE del eted = "'0'
GROUP BY emai | _address_id,
bean_ nodul e,
bean_id
ORDER BY primary_address DESC;
TRUNCATE TABLE enmi | _addr _bean_rel;
| NSERT | NTO enuai | _addr _bean_rel

296/ 2.508

https://support.sugarcrm.com/resources/working_with_sugar_support/
https://support.sugarcrm.com/resources/working_with_sugar_support/

SELECT
FROM emai | _addr _bean_rel _tnp;
SELECT
COUNT(*) AS repetitions,
date_nodi fi ed,
bean_id,
bean_nodul e
FROM enui | _addr _bean_rel
VWHERE del eted = '0'
GROUP BY bean_id,
bean_nodul e,
emai | _address_id
HAVI NG repetitions > 1;
COWM T;

Note: If you are a SugarCloud customer, you can open up a case with Sugar
Support to have this query run for you.

Logging
Overview
There are two logging systems implemented in the Sugar application: SugarLogger

and PSR-3. PSR-3 is Sugar's preferred logger solution and should be used going
forward.

PSR-3

PSR-3 compliant logging solution has been implemented based on PHP Monolog.

Log Levels

Log Level Description

Debug Logs events that help in debugging the
application

Info Logs informational messages and
database queries

Warning Logs potentially harmful events

Notice Logs messages for deprecated methods

297 /2.508

https://support.sugarcrm.com/resources/working_with_sugar_support/
https://support.sugarcrm.com/resources/working_with_sugar_support/
https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-3-logger-interface.md

that are still in use.

Error Logs error events in the application

Alert Logs severe error events that may cause
the application to abort. This is the
default and recommended level.

Critical Logs events that may compromise the
security of the application

Off Turns off all logging

When you specify a logging level, the system will record messages for the specified
level as well as all higher levels. For example, if you specify "Error", the system
records all Error, Fatal, and Security messages. More information on logging
levels can be found in the logger level configuration documentation.

Considerations

e When you are not troubleshooting Sugar, the log level should be
set to Fatal in Admin > System Settings > Logger Settings to ensure that
your environment is not wasting unnecessary resources to write to the
Sugar log.

Logging Messages

The PSR-3 implementation in Sugar can also be used to log messages to the Sugar
Log file. You can utilize the implementation to log to the Sugar log file using the
default channel or you can specify your own custom channel if you want further
control over when your custom logs should be displayed.

use \ Sugar crm Sugar cr m Logger\ Fact ory;

/1 Get the default Logger

$Logger = Factory::getLogger (' default');
$Logger - >debug(' Debug | evel nessage');
$Logger->info('Info | evel nmessage');
$Logger->notice(' Notice | evel nessage');
$Logger - >war ni ng(' Warni ng | evel nessage');
$Logger->error(' Error |evel nessage');
$Logger->critical (" Critical |level nessage');
$Logger->alert (' Alert |level nessage');

$Logger - >ener gency(' Emergency | evel nessage');

/1 Get a custom Log Channel
$Logger = Factory::getLogger (' ny_| ogger');

298 /2.508

Note: For more information on using custom channels, adding custom log handlers
and processors see the PSR-3 Logger documentation.

SugarLogger

The SugarLogger class, located in ./include/SugarLogger/SugarLogger.php, allows
for developers and system administrators to log system events to a log file. Sugar

then determines which events to write to the log based on the system's Log Level.
This can be set in Admin > System Settings.

Log Levels

Log Level Description

Debug Logs events that help in debugging the
application

Info Logs informational messages and
database queries

Warn Logs potentially harmful events

Deprecated Logs messages for deprecated methods
that are still in use.

Error Logs error events in the application

Fatal Logs severe error events that may cause
the application to abort. This is the
default and recommended level.

Security Logs events that may compromise the
security of the application

Off Logging is turned off

When you specify a logging level, the system will record messages for the specified
level as well as all higher levels. For example, if you specify "Error", the system
records all Error, Fatal, and Security messages. More information on logging
levels can be found in the logger level documentation.

Considerations

e When you are not troubleshooting Sugar, the log level should be set to
Fatal in Admin > System Settings > Logger Settings to ensure that your
environment is not wasting unnecessary resources to write to the Sugar
log.

299 /2.508

Logging Messages
Using $GLOBALS['log']

How to log messages using $GLOBALSI['log'] in the system.

$G.OBALS[' | 0og'] - >debug(' Debug | evel nessage');
$CGLOBALS['log']->info('Info | evel nessage');
$GOBALS['log']->warn(’' Warn | evel nessage');
$G.OBALS[' | 0g'] - >deprecat ed(' Deprecated | evel nessage');
$GOBALS['log']->error (' Error |evel nessage');
$CGLOBALS['l og']->fatal (' Fatal |evel nmessage');
$GOBALS['l og']->security(' Security | evel nmessage');

For more information on the implementation, please refer to the Sugarl.ogger
documentation.

Using LoggerManager
How to log messages using the LoggerManager.

$Logger = \Logger Manager:: get Logger ();
$Logger - >debug(' Debug | evel nessage');
$Logger->info(' I nfo | evel nmessage');
$Logger->warn(' Warn | evel nessage');
$Logger - >deprecat ed(' Deprecated | evel nessage');
$Logger->error (' Error |evel nessage');
$Logger->fatal (' Fatal |evel nessage');
$Logger->security(' Security | evel nessage');

For more information on the implementation, please refer
to the SugarLogger documentation.

Log Rotation

The SugarLogger will automatically rotate the logs when

the logger.file.maxSize configuration setting has been met or exceeded. When this
happens, the Sugar log will be renamed with an integer. For example, if the Sugar
log was named "sugarcrm.log, it will then be renamed "sugarcrm 1.log". The next
log rotation after that would create "sugarcrm 2.log". This will occur until

the logger.file.maxl.ogs configuration setting has been met. Once met, the log
rollover will start over.

300 /2.508

Debugging Messages with _ppl()

When developing, it may be beneficial for a developer to use ppl() method to log a
message to the Sugar log. The ppl() method handles converting Objects, so you
can quickly dump an entire object to the log while testing during development.

_pp!l (' Debuggi ng nessage') ;

This will write a message to the Sugar log that defines the message and file
location. An example is shown below:

------------------------------ _ppLogger () file: nyFile.php line# 5--

Note: It is important that you remove ppl() from your code for production use as
it will affect system performance.

Creating Custom Loggers

Custom Loggers

Custom loggers, defined in ./custom/include/SugarLogger/, can be used to write
log entries to a centralized application management tool or to write messages to a
developer tool such as FirePHP.

To do this, you can create a new instance class that implements the
LoggerTemplate interface. The following is an example of how to create a FirePHP
logger.

.Jcustom/include/SugarLogger/FirePHPLogger.php.

<?php

301/2.508

/'l change the path below to the path to your FirePHP instal
requi re_once('/path/to/fb. php');

cl ass FirePHPLogger inplenents Logger Tenpl ate

{
[** Constructor */
public function _ construct()
{
if (
i sset ($G.OBALS[' sugar _config']['logger']['default'])
&% $CGLOBALS['sugar_config']['logger']['default'] == "FireP
HP'
)
{
Logger Manager : : set Logger (' defaul t', " Fi rePHPLogger"') ;
}
}

/** see Logger Tenplate::log() */
public function | og($level, $nessage)

{

/'l change to a string if there is just one entry
if (is_array($nessage) && count($nessage) == 1)

{
}

$nessage = array_shi ft($nessage);

switch ($l evel)
{
case 'debug':
FB: : | og($message) ;
br eak;
case 'info
FB: : i nf o($nessage) ;
br eak;
case 'deprecated':
case 'warn':
FB: : war n($nessage) ;
br eak;
case '‘error':
case 'fatal':
case 'security':
FB: : error ($nessage);
br eak;

302 /2.508

The only method that needs to be implemented by default is the log() method,
which writes the log message to the backend. You can specify which log levels this
backend can use in the constructor by calling the LoggerManager::setLogger()
method and specifying the level to use for this logger in the first parameter;
passing 'default' makes it the logger for all logging levels.

You will then specify your default logger as 'FirePHP' in your ./config override.php
file.

$sugar_config['logger']['default'] = "'FirePH;

PSR-3 Logger

Monol og\ Handl er\ Handl er I nterf ace

Overview

As of Sugar 7.9, a PSR-3 compliant logging solution has been implemented based
on PHP Monolog. Accessing the PSR-3 Logger Objects can be done by via the
\Sugarcrm\Sugarcrm\Logger namespace. Currently, this logging implementation is
only used in a few areas of the system to allow for more in-depth logging in those
areas, see the Usage section for more details.

Architecture

The PSR-3 Logging solution is found in ./src/Logger directory, which is mapped to
the \Sugarcrm\Sugarcrm\Logger namespace in the application. The following
outlines the architecture and current implementations of those core objects.

Factory

The Logger Factory Object, namespaced as \Sugarcrm\Sugarcrm\Logger\Factory,
is a singleton factory that creates and manages all Loggers currently being used by
the system. The Logger Factory uses 'channels' to allow for multiple Loggers to be
utilized and configured independently of default log level set for the system. It also
allows for each channel to use different handlers, formatters, and processors.
Check out the Usage section below for further details on configuration and usage.

303/2.508

https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-3-logger-interface.md

Methods
getLogger($channel)

Returns the requested channels \Psr\Log\LoggerInterface implementation

Arguments
Name Type Description
$channel String The channel for which you
are logging against
Example

use \ Sugar crm Sugar cr mi Logger\ Fact ory;

$Logger = Factory::getlLogger (' default');

Handlers

Handlers are the primary object used to manage the logs. They control how logs
are submitted and where the logs will go. Since the PSR-3 Logging solution is
based on Monolog, there are a number of default Handlers included in Sugar,
however, they are not set up in the Sugar architecture to be utilized right off the
bat. Sugar utilizes a Factory implementation for the handlers so that

the Logger Factory Object can build out specific Handlers for each channel based
on the Sugar Config.

Factory Interface

The Factory Interface for Handlers is used to implement a Logging Handler, so
that the Logger Factory can build out the configured handler for a channel,
without a lot of work from external developers. The Handler Factory Interface is
located in ./src/Logger/Handlers/Factory.php or in code

at the \Sugarcrm\Sugarcrm\Logger\Handler\Factory namespace.

Methods

There is only one method to implement for a Handler Factory, which is the create()
method. This will contain the necessary Logic to set up the Logger Handler

create($level, $config)

Arguments

Name Type Description

304 /2.508

$level String The log level the Logger
Handler will operate at

$config Array The config parameters set
for the handler in the
Sugar config file

Returns

The Monolog\Handler\HandlerInterface implementation

Implementations

By default, Sugar only comes with a single Handler implementation, which is the

File Handler implementation. This is used to log directly to the ./sugarcrm.log file
to mirror the functionality of the previous logging framework. For information on
adding custom handlers, or implementing the built-in Monolog handlers inside of
Sugar PSR-3 Logging framework, see the Customization section below.

Configuration

To configure the default logging handler for Sugar the following configuration
setting is used:

$sugar _config['logger'][' handler'] = '<handl er>";

You can also configure a different Logging Handler or Handlers for a specific
channel:

/1 Si ngl e Handl er

$sugar _config['logger'][' channels']['test _channel'][' handlers'] = '<ha
ndl er>';

/1Ml tiple Channels

$sugar _config['logger'][' channels']['test_channel']['handlers'] = arra

y(' <handl er1>',' <handl er 2>");

To pass configuration properties to a Handler your configuration will need to look
as follows:

/I For system handl er
$sugar_config['logger'][' handlers'][' <handler>']['host'] = '127.0.0.1"

305/2.508

$sugar _config['logger'][handlers'][' <handler>"]["'port'] = 12201;

/I For channel handlers

$sugar _config['logger']['channels']['test _channel'][' handlers'][' <hand
ler>]["host'] ="127.0.0.1";

$sugar _config['logger']['channels']['test _channel'][' handlers'][' <hand
ler>]["port'] = 12201,

$sugar _config['logger']['channels']['test _channel'][' handlers'][' <hand
ler>]['level'] = "debug';

Note: For more information, please refer to the logger.channels.channel.handlers
documentation.

Formatters

Formatters are a component of the Handler Object. By default Sugar only comes
with a single Formatter, which is the BackwardCompatibleFormatter used by the
File Handler, which simply assures that Log messages are consistent with the
legacy Logging functionality. Formatters are used and built out in accordance with
the Monolog framework, and under the majority of circumstances, building out a
custom formatter is not necessary. For more information on Formatters, you can
review the Monolog repository.

Processors

Processors provide a way to add more information to Log messages, without
having to hard code this information inside the Handler, so that it can be used only
when necessary. For example, Sugar's PSR-3 Logging implementation provides
two default Processors that can be enabled for a given channel or handler via
configuration. These Processors provide functionality such as adding a stack trace
or the web request information to the log message to provide further debugging
context.

Factory Interface

The Factory Interface for processors is used to implement a Logging Processor, so
that the Logger Factory can build out the configured handler for a channel,
without a lot of work from external developers. The Processor Factory Interface is
located in ./src/Logger/Processor/Factory.php or in code

at \Sugarcrm\Sugarcrm\Logger\Handler\Factory namespace.

Methods

There is only one method to implement for a Processor Factory, which is

306/ 2.508

https://github.com/Seldaek/monolog/

the create() method. This method will contain the necessary Logic to set up the
Processor object.

create($config)

Arguments

Name Type Description

$config Array The config parameters set
for the processor in the
Sugar config file

Returns

Callable - See Customization section for an example of implementation, otherwise
review the included Processor Factory implementations in code in
./src/Logger/Processor/Factory/.

Implementations

By default, Sugar comes with two Processor implementations,
\Sugarcrm\Sugarcrm\Logger\Processor\BacktraceProcessor
and \Sugarcrm\Sugarcrm\Logger\Processor\RequestProcessor.

BacktraceProcessor

As the name implies, the BacktraceProcessor appends a backtrace or stack trace to
the log message output, to easily trace where and how the log message came from.
The Factory implementation for this Processor lives

in ./src/Logger/Processor/Factory/Backtrace.php, and is referenced in the sugar
config as backtrace.

The following shows an example of the output that occurs when utilizing this
processor:

Fri Mar 23 09:24:19 2018 [90627][1] [FATAL] <l og message>; Call Trace

\nO: /var/ww Ent/ 71110/ cust om Sugar Quer yLogger . php: 43 - Sugarcrm Su
garcrm Logger\ Backwar dConpat i bl eAdapter::fatal ()\n2: /var/ww Ent/ 7111
O/include/utils/Logi cHook. php: 270\ n3: /var/ww/ Ent/71110/i nclude/ utils
/ Logi cHook. php: 160 - Logi cHook: : process_hooks()\n4: /var/ww/ Ent/ 71110
/ dat a/ Sugar Bean. php: 6684 - Logi cHook: :call _custom|l ogic()\n5: /var/ww
/[Ent/ 71110/ dat a/ Sugar Bean. php: 3317 - Sugar Bean::call _custom| ogic()\n6
: [/var/www Ent/ 71110/ cl i ents/ base/ api/FilterApi.php: 632 - SugarBean::f
et chFromQuery()\n7: /var/www/ Ent/ 71110/ clients/base/api/FilterApi.php:
397 - FilterApi::runQuery()\n8: /var/ww/ Ent/71110/i ncl ude/ api / Rest Ser
vice.php: 257 - FilterApi::filterList()\n9: /var/ww/ Ent/ 71110/ api/rest
. php: 23 - Rest Service: : execute()

307 /2.508

Note: when viewing complex logs, you can use the following to print log entries in
a more human readable format:

cat sugarcrmlog | sed s/\\n/\n/g

RequestProcessor

The RequestProcessor appends Session properties to the Log message that would
help identify the request that caused the log message. The Factory implementation
for this Processor lives in ./src/Logger/Processor/Factory/Request.php, and is
referenced in the sugar config as request.

The following list of session properties are appended to the log:

e User ID
e Client ID (OAuth2 Client)
e Platform

The following shows an example of the output that occurs when utilizing this
processor:

Mon Mar 26 09:48:58 2018 [5930][1] [FATAL] <l og nessage>; User |D=1;
Client |D=sugar; Platformnmebase

Configuration

To configure the default Logging Handler for Sugar to utilize the built-in
Processors:

/1 Configure a single Processor
$sugar _config['logger'][' channels']['default'][' processors']

ace |

"backtr

/1 Configure multiple Processors
$sugar _config['logger'][' channels']['default'][' processors'] = array('
backtrace', ' request');

You can also configure different channels to utilize the processors:

308 /2.508

/1 Single Processors

$sugar _config['logger']['channels']['<channel >]J[' processors'] = 'back
trace';

[IMultiple Channels

$sugar _config['logger']['channels']['<channel >][' processors'] = array

(' backtrace','request');

To pass configuration properties to a Processor your configuration will need to
look as follows:

$sugar _config['logger'][' channels']['<channel >]J[' processors'][' <pro
cessor>']['config key'] = 'test value';

Note: For more information, please refer to the
logger.channels.channel.processors documentation.

Usage

As previously mentioned the Logger Factory allows for multiple channels to be
configured independently of each other. The following examples will showcase how
to use the Logger Factory to get a channel's Logger and use it in code, as well as
how to configure the system to use multiple channels with different configurations.

Basic Usage
use \ Sugar crm Sugar cr m Logger\ Fact ory;

// Retrieve the default Logger
$Def aul t Logger = Factory::getLogger (' default');
$Def aul t Logger->alert (' This is a | og nessage');

Configuring Channels

The following is an example of the ./config override.php file that would configure
two different channels at different log levels, using the
logger.channel.channel.level configuration setting. These two channels would
allow for portions of the code to Log messages at Debug (and higher) levels, and
other portions to only log Info (and higher) levels.

309 /2.508

$config['logger']['channels']['default'] = array(
‘level' => "alert’
)
$config['logger']['channels']['channel1'] = array(
"l evel' => "debug'

),

The following code example shows how to retrieve the above-configured channels
and use the Logger for each channel.

use \ Sugar crm Sugar crml Logger\ Fact ory;

//Retrieve the default Logger
$Def aul t Logger = Factory::getlLogger('default');
$Def aul t Logger->i nfo("This nessage will not display");

/I Channel 1 Logger
$Channel 1Logger = Factory::getLogger (' channel 1');
$Channel 1Logger->i nfo("This nessage will display");

In the example above, assuming a stock system with the previously mentioned
config values set in config override.php, the default channel logger would be set to
Alert level logging, and therefore would not add the info level log to the Log file,
however, the channelll Logger would add the log message to the Sugar log file,
since it is configured at the info log level.

Default Channels

By default, Sugar has a few areas of the system that utilize a different channel
than the default. The usage of these channels means that you can configure the log
level and processors differently for those areas, without inundating the log file
with lower level logs from other areas of the system.

Channel Description

authentication This logger channel is utilized by the
AuthenticationController, and can show
useful information about failed login
attempts.

input validation This logger channel is utilized by the
Input Validation framework and can
display information regarding failed

310/2.508

validations.

metadata This logger channel is utilized by the
MetadataManager and mainly provides
information on when rebuilds occur.

rest This channel is utilized by
the RestService object.
db This channel is utilized by the databse

for query logging.

Customization

You can use custom channels where ever you would like in your customizations,
and configure them as outlined above, but if you need to send logs somewhere
other than the Sugar log file, you will need to build out your own Handler. The
following will walk through adding a custom Logging Handler that utilizes
Monologs built-in Chrome Logger.

Adding a Custom Handler
Create the following file in ./custom/src/Logger/Handler/Factory/ folder.
.Jcustom/src/Logger/Handler/Factory/Chrome.php
<?php
nanespace Sugarcrm Sugar crnl cust om Logger\ Handl er\ Fact ory;

use Monol og\ Handl er\ Chr omePHPHandl er;
use Sugar crm Sugar cr mi Logger\ Handl er\ Fact ory;

class Chrone inplenments Factory

{
public function create($l evel, array $config)
{
return new ChronmePHPHandl er ($l evel) ;
}
}

Once you have the new class in place, you will need to run a Quick Repair and
Rebuild so that the new class is auto-loaded correctly. Then you can configure the
handler for use in the Sugar config:

311/2.508

http://www.chromelogger.com

$sugar _config['logger'][' channels']['<channel>"]["'handlers'] = 'Chro
me' ;

Note: For more information, please refer to
the logger.channels.channel.handlers documentation.

SugarLogger

Overview
The SugarLogger is used for log reporting by the application. The following article

outlines the LoggerTemplate interface as well as the LoggerManager object and
explains how to programmatically use the SugarLogger.

LoggerTemplate

The LoggerManager manages those objects that implement the LoggerTemplate
interface found in ./include/SugarLogger/LoggerTemplate.php.

Methods
log($method, $message)

The LoggerTemplate has a single method that should be implemented, which is the
log() method.

Arguments
Name Type Description
$method String The method or level which
the Logger should handle
the provided message
$message String The logged message
Implementations

Sugar comes with two stock LoggerTemplate implementations that can be utilized
for different scenarios depending on your needs. You can extend from these
implementations or create your own class that implements the template as
outlined in Creating Custom Loggers section.

SugarLogger

312/2.508

The SugarLogger class, found in ./include/SugarLogger/SugarLogger.php, is the
default system logging class utilized throughout the majority of Sugar.

SugarPsrlLogger
The SugarPsrLogger was added in Sugar 7.9 to accommodate the PSR-3 compliant

logging implementation. This logger works just like the SugarLogger object,
however it uses the Monolog implementation of Logger.

To configure the SugarPsrLogger as the default system logger, you can add the
following to your configuration:

$sugar _config['logger']['default'] = 'SugarPsrlLogger"';

Log Level Mappings

PSR-3 defines the set of log levels that should be implemented for all PHP
Applications, however, these are different from the log levels defined by

the SugarLogger. Below is the list of SugarLogger log levels and

their SugarPsrLogger compatible mapping. All calls to the SugarLogger log levels
are mapped according to the table below. For example, when using

the SugarPsrLogger class, all calls to the fatal() method will map to the Alert log
level.

SugarLogger Level SugarPsrLogger Level (PSR-3)
Debug Debug

Info Info

Warn Warning

Deprecated Notice

Error Error

Fatal Alert

Security Critical

LoggerManager

The LoggerManager Object acts as a singleton factory that sets up the configured
logging object for use throughout the system. This is the object stored in
$GLOBALS['log'] in the majority of use cases in the system.

Methods

313/2.508

https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-3-logger-interface.md

getLogger()

This method is used to get the currently configured Logger class.
setLevel($level)

You may find that you want to define the log level while testing your code without
modifying the configuration. This can be done by using the setLevel() method.

Arguments
Name Type Description
$level String The method or level which
the Logger should handle
the provided message
Example

\ Logger Manager : : get Logger () - >set Level (' debug');

Note: The use of setLevel should be removed from your code for production and it
is important to note that it is restricted by package scanner as defined by
the Module Loader Restrictions.

assert($message, $condition)

In your custom code you may want to submit a debug level log, should a condition
not meet your expectations. You could do this with an if statement, otherwise you
could just use the assert() method as it allows you to pass the debug message, and
the condition to check, and if that condition is FALSE a debug level message is
logged.

Arguments

Name Type Description
$message String The log message
$condition Boolean The condition to check
Example
$x = 1;

\ Logger Manager : : get Logger () - >assert (' X was not equal to 0!', $x==0)

314 /2.508

wouldLog($level)

If in your customization you find that extra debugging is needed for particular area
of code, and that extra work might have performance impacts on standard log
levels, you can use the wouldLog() method to check the current log level before
doing the extra work.

Arguments

Name Type Description

$level String The level to check against
Example

i f (\Logger Manager: : get Logger () - >woul dLog("' debug')) {
/1 Do extra debuggi ng

}

setLogger($level, $logger)

This method allows you to setup a second logger for a specific log level, rather
than just using the same logger for all levels. Passing default as the level, will set
the default Logger used by all levels in the system.

Arguments
Name Type Description
$level String The level to check against
$logger String The class name of an
installed Logger
Example

/1 Set the debug level to a custom Logger
\ Logger Manager : : get Logger () - >set Logger (' debug', ' CustomnlLogger');

/1 Set all other levels to SugarPsrlLogger
\ Logger Manager : : get Logger () - >set Logger (' defaul t', ' Sugar PsrLogger');

getAvailableLoggers()

Returns a list of the names of Loggers found/installed in the system.

Arguments

315/2.508

None
Example

$l oggers = \ Logger Manager : : get Logger () - >get Avai | abl eLoggers();

getLoggerLevels()

Returns a list of the names of Loggers found/installed in the system.
Arguments
None

Example

$l evel s = \ Logger Manager : : get Logger () - >get Logger Level s();

Adding a Custom SugarLogger

Custom loggers are defined in ./custom/include/SugarLogger/, and can be used to
write log entries to a centralized application management tool, to a developer tool
such as FirePHP or even to a secondary log file inside the Sugar application.

The following is an example of how to create a FirePHP logger.
.Jcustom/include/SugarLogger/FirePHPLogger.php.

<?php

/'l change the path below to the path to your FirePHP install
requi re_once('/path/to/fb. php');

cl ass FirePHPLogger inplenents Logger Tenpl ate

{
[** Constructor */
public function _ construct()
{
if (
i sset ($G.OBALS[' sugar _config' J['logger'][' default'])
&% $GLOBALS['sugar _config' J['logger']['default'] == "FireP
HP'

316 /2.508

Logger Manager : : set Logger (' defaul t', "' Fi rePHPLogger');

}

/** see LoggerTenpl ate::log() */
public function |og($level, $nessage)
{
/'l change to a string if there is just one entry
if (is_array($nessage) && count($nessage) == 1) {
$nessage = array_shift($nessage);

}

switch ($level) {

case 'debug':
FB: : | og($message) ;
br eak;

case 'info':
FB: : i nf o($nessage) ;
br eak;

case 'deprecated :

case 'warn':
FB: : war n($nessage) ;
br eak;

case 'error':

case 'fatal':

case 'security’
FB: : error($nessage);
br eak;

You will then specify your default logger as 'FirePHP' in your ./config override.php
file.

$sugar _config['logger']['default'] = "'FirePHP ;

Logic Hooks

Overview

317/2.508

The Logic Hook framework allows you to append actions to system events such as
when creating, editing, and deleting records.

Hook Definitions

A logic hook definition file defines the various actions to execute when an event is
triggered. It is important to note that there are various ways to implement a logic
hook. The following sections describe the different ways to implement a logic hook
and when to use each.

Methodologies

Logic hook definitions can pertain to a specific module or to the entire application.
Either way, you must decide if the logic hook definition will be implemented as an
extension of or directly to the module or application. The following sections explain
the difference between these methodologies.

Module Extension Hooks

Module extension hooks are located in
.Jcustom/Extension/modules/<module>/Ext/LogicHooks/ and allow a developer to
define hook actions that will be executed for the specified events in a given
module. Extensions are best used when creating customizations that may be
installed in various environments. They help prevent conflicting edits that occur
when modifying ./custom/modules/<module>/logic hooks.php. More information
can be found in the Logic Hooks extension section.

Module Hooks

Module hooks are located in ./custom/modules/<module>/logic_hooks.php and
allow a developer to define hook actions that will be executed for the specified
events in a given module. This path can be used for private development, however,
it is not recommended for use with distributed modules and plugins. For
distributed code, please refer to using module extensions.

Application Extension Hooks

Application extension hooks are located in
.Jcustom/Extension/application/Ext/LogicHooks/ and allow a developer to

define hook actions that will be executed for all specified application-level

events using the extension framework. More information can be found in the Logic
Hooks extension section.

Application Hooks

318/2.508

Application hooks are located in ./custom/modules/logic _hooks.php and allow a
developer to define hook actions that will be executed for the specified events in
all modules. This path can be used for private development, however, it is not
recommended for use with distributed modules and plugins. For distributed code,
please refer to using application extensions.

Definition Properties

All logic hooks must have a $hook version and $hook array variable defined. The
following sections cover each required variable.

hook version

All logic hook definitions will define a $hook version. This determines the version
of the logic hook framework. Currently, the only supported hook version is 1.

$hook _version = 1;

hook_array

The logic hook definition will also contain a $hook array. This defines the specific
action to execute. The hook array will be defined as follows:

Name Type Description

event name String The name of the event to
append the action to

process_index Integer The order of action
execution

description String A short description of the
hook action

file path String The path to the logic hook

file in the ./custom/
directory, or null if using
namespaces

class name String The name of the logic
hook action class
including any namespaces

method name String The name of the logic
hook action method

Your definition should resemble the code block below:

319/2.508

<?php
$hook version = 1;

$hook array[' <event nanme>'][] = array(
<process_i ndex>, //Integer
'<description>, //String
"<file_path>', //String or null if using nanmespaces
'<class_nanme>', /[/String
' <met hod_name>', //String

Hook Method

The hook action class can be located anywhere you choose. We recommended
grouping the hooks with the module they are associated with in the ./custom/
directory. You can create a hook action method either with a namespace or
without.

Namespaced Hooks

As of 7.7, developers can create namespaced logic hooks. When using namespaces,
the file path in ./custom/ will be automatically built out when using the
corresponding namespace. The filename defining the class must match the class
name exactly to allow the autoloader to find the class definition.

Namespace File Path
Sugarcrm\Sugarcrm\custom .Jcustom/
Sugarcrm\Sugarcrm\custom .Jcustom/src/
Sugarcrm\Sugarcrm\custom\any\path .Jcustom/any/path/
Sugarcrm\Sugarcrm\custom\any\path ./custom/src/any/path/

.Jcustom/Extension/modules/Accounts/Ext/LogicHooks/<file>.php

<?php
$hook_array[' before_save'][] = array(
1,
' Hook description',
nul |,
" Sugarcrm\ Sugar crmi\ cust om \ nodul es\\ Account s\ \ cl assNane' ,
" met hodNane'

320/2.508

?>

.Jcustom/modules/Accounts/className.php
<?php
nanespace Sugarcrm Sugar crml cust oml nodul es\ Account s;

cl ass cl assName

{ functi on met hodNane($bean, $event, $argunents)
{
/11ogic
}
}

?>

The logic hook method signature may contain different arguments depending on
the hook event you have selected.

Hooks without Namespaces
.Jcustom/Extension/modules/Accounts/Ext/LogicHooks/<file>.php
<?php
$hook_array[' before_save'][] = array(
'1;—|ook description',
' cust om nodul es/ Account s/ cust onLogi cHook. php',

"¢l assNane',
" met hodNane'

2>

.Jcustom/modules/Accounts/customLogicHook.php

<?php

321/2.508

cl ass cl assName

{ function net hodNane($bean, $event, S$argunents)
{
/11 ogic
}
}

?>

The logic hook method signature may contain different arguments depending on
the hook event you have selected.

Considerations
When using logic hooks, keep in mind the following best practices:

e As of PHP 5.3, objects are automatically passed by reference. When
creating logic hook signatures, do not append the ampersand (&) to the
$bean variable. Doing this will cause unexpected behavior.

e There is no hook that fires specifically for the ListView, DetailView or
EditView events. Instead, use either the process record or after retrieve
logic hooks.

e In order to compare new values with previous values, use fetched row to
determine whether a change has occurred:

if ($bean->fetched_row'{field}'] !'= $bean->{field})
{

}

/11 ogic

e Make sure that the permissions on the logic hooks.php file and the class
file that it references are readable by the web server. Otherwise, Sugar will
not read the files and your business logic extensions will not work. For
example, *nix developers who are extending the Tasks logic should use the
following command for the logic hooks file and the same command for the
class file that will be called:

chnod +r ./custoni nodul es/ Tasks/ | ogi c_hooks. php

e Make sure that the entire ./custom/ directory is writable by the web server
or else the logic hooks code will not work properly.

322/2.508

Application Hooks

Application hooks execute logic when working with the global application.

after entry point

Overview

The after entry point application hook executes at the start of every request.

Definition
function after_entry_point($event, $argunents){}
Arguments
Name Type Description
event String The current event
arguments Array Additional information
related to the
event (typically empty)
Considerations

e The after entry point hook is a global logic hook where the logic hook
reference must be placed in ./custom/modules/logic_hooks.php.

Jinclude/entryPoint.php.

This hook is executed at the start of every request at the end of

This hook should not be used for any type of display output.
The after entry point hook is ideally used for logging or loading libraries.
Application hooks do not make use of the $bean argument.

Change Log
Version Note
6.4.3 Added after entry point hook

Example

323/2.508

.Jcu